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SUMMARY

The design and operation of a passive damper for use on spinning and

nonspinning entry bodies is examined in this report. The damper is

@ constant curvature tube which contains a high density ball and a fluid,

Two such dampers are orthogonally mounted with respect to the vehicle

centerline with the convex edges facing forward., Oscillations of the

vehicle cause the balls to move in their tubes. The ball motions are
opposed by the fluid, ene gy is dissipated, and the vehicle angle of
attack is damped,

The basic damper parameters are the mass, the tube radius of curvature,

the location of the tube, the tube length, elasticity of the tube stops,

and the fluid drag. A1l other f €ing equal, the damper performance

is limited by the available mass. The results given in this report are
for dampers which weigh between 5 and 10 percent of the vehicle weight.
This suggests that passive dampers are not practical for vehicles which

weigh in excess of 100 pounds, active systems being more competitive.

For a '"tuned" damper, the damper and vehicle

3 £
hi pitch £

n Irequencies are
equal. The frequency ratio depends only on the tube curvature and not
on the damper mass. Linear theory indicates that the optimum tube cur-
vature is that which ''tunes'' the damper. Runs made for blunt vehic les
indicate that the tuning curvature is optimum even when gross non-

linearities are taken into consideration. However, for slender vehicles
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center of mass. This has the effect of telescoping the effective damper

moment arm

The tube length is restricted either by the dimensions of the vehicle
or by limits on the slope at the ends of the tubes. Curvatures measured
from the vehicle centerline should not exceed 60 degrees. TFor values
approaching 90 degrees, the balls tend to "linger'" near the stops; and

for values exceeding 90 degrees, the motion may be temporarilly unstable.

For nonspinning vehicles, the tube stops should be made as inelastic
as possible; first, because some energy will be dissipated on impact;
and second, the transients to motion are minimized. The elasticity of

the tube stops is not an important factor for spinning vehicles.

The fluid drag parameters are selected last. Damper performance is
relatively insensitive to changes by a factor of two in the fluid drag.
Ballpark values are established by trial and error. The gap between the
ball and the tube is the main factor in determining fluid drag. An
analytical model of the fluid drag is developed and confirmed by exten-
sive testing. Curves are presented which relate the fluid drag coeffi-
cient and Reynold's number for selected gap ratios. It is established
damper designs. This finding is significant because the weight of the

fluid, being a gas, is negligible.

The external-vehicle damper dynamics was modeled and programmed for
solution on a digital computer. Actually, two programs were written:

a planar program which applies only to nonspinning bodies, and a

iv

. -
with large angular motions and finite tube lengths, the optimum tube
curvature was found to be two to four times larger than the tuning
curvature,
The damper location is also a critical factor. As a rule, the damper
should be placed as far aft as possible, certainly behind the vehicle




three-dimensional program which applies to both spinning and non-
spinning bodies. The planar model was used to investigate vehicle
response and damper tradeoffs for the Goddard Mars atmospheric probe.
The three-dimensional model was used to conduct similar studies for the

Ames Mars atmospheric probe and a slender Earth re-entry body, both

spin-gtabilized.

For spinning bodies, the angle of attack is damped to a small trim angle
and holds constant until impact. The trim angle increases as the fluid
drag increases. On the other hand, the dynamic pressure at which trim

occurs increases with fluid drag,

The damper also causes the spin rate to decrease until the angle of
attack is trimmed. The spin rate stabilizes b 1d this point. The
spin reduction is swall for blunt bodies, on the order of 5 percent
spin changes were observed for the

nt
c-entry body. The changes were the smallest when the

The damper also damps the precession rate of the symmetry axis about the
velocity vector. For slender bodies, the precession rate is driven

. '
to zerc at about the

game point that the angle of attack is trimmed.

For blunt bodies, the precession rate decay is much slower.

The damper is shown to be an effective device for damping the angle of
attack envelope and the precession rate for spinning and nonspinning
entry bodies. It does not introduce any instabilities. However, there
is no evidence and, indeed, we doubt that the damper can prevent the

phenomena of roll resonance, of current interest to the industry.




CM

Ccp

NOTATION*

coefficients in the series approximation for the axial force
coefficient

basic damper parameter, 5I/(7MRL)

ratio of damper axial frequency to vehicle pitch frequency

ratio of damper normal frequency to vehicle pitch frequency
axial force coefficient

pitch moment coefficient

normal force coefficient

coefficients in fluid drag approximation
center of curvature

center of mass

center of pressure

entry rate parameter, B v sin vy

distance between the CC and the CM

fluid drag force

ball diameter

energy

computer parameters used to remove dampers

computer parameter used to eliminate the 1lift force effect
on v

damper energy dissipation rate

*The symbols used in Section 8 are listed at the end of that section.
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N

axial force

drag force

lift force

normal force

tangential force on ball
aerodynamic moment

moment due acceleration of the CM
altitude

reference altitude

pitch and yaw inertias, when equal
moment of inertia about x

moment of inertia about y

moment of inertia about the symmetry axis

" "
: c Ll T a1 Y “_
a1+232kz+a3(ﬁkz 1,+4a4kz(2kz 1)
2m,_k 4k2 1 k 2k2 1
my+em, z+m3( A )+am4 2 (Zk,-1)
i , 2_ 2_
n1+2n2kz+n3(+kz 1)+4n4kz(2kz 1)
damper inertia ratio, mRZ/I

7 5 2 2
effective inertia ratio, B k[7(k-l)+bN]

2
mR /I1

mR?/T

L
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mR% /3

a unit vector along the velocity vector
reference length

vehicle mass

mass of a single damper ball

coefficients in the series approximation for the pitch
moment coefficient

vehicle inertia ratio, J/I

coefficients in the series approximation for the normal
force coefficient

constraint moment about the CC due to the acceleration of
the CM

pitch moment

constraint moment about the CM due to the acceleration
cf the CM

dynamic pressure

ball rates, di

ball rate, &

angle of attack rate,é

ball path radius

Reynold's number

radius vector from the CM to the ball
ball radius

reference area

kinetic energy

time

viii




U ball speed in tube
v velocity of the CM

inertial coordinates in the planar model

X,y,2 body fixed coordinate system with z along the symmetry axis

xfyfzw nonrotating coordinate system with origin at the CM

a o, ball angles
maximum value for o
computer parameter relating to @

reciprocal of the atmospheric scale height

angle between v and the local horizontal

On

fluid drag function

€ impact elasticity factor

3

T T 4 L
W T T e
o] Q
< » = = H

] total angle of attack

eb angle of rotation of ball about its center
0 € envelope

A D/R
Kg gap ratio (labeled X\ in Section 8)

v kinematic viscosity of fluid
Ati coefficients in fluid drag function §

P

atmospheric density

ix




reference density

position coordinates of the CM in the planar model
nondimensional parameter, 2()/c

linear pitch frequency

precession angle of symmetry axis about Vv

relative precession angle of body with respect to the
nodal axis

Vqst/1

angular velocity of the body about the CM
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SECTION 1

INTRODUCTION

Figure 1-la shows a pendulum of mass M and a damper which are acted on

by gravity g. The damper is a curved tube which contains a small ball

and a viscous fluid. Oscillations of the pendulum about the pivot

excite the ball which motion is opposed by the fluid. As a result, energy
is dissipated from the system, and the motions of the pendulum and ball

are damped to the vertical. These comments seem self-evident; however,

-

iie skeptic may prove them either mathematically or by test.

The gravity model is but an analogy to the model of the spherical entry
body and damper shown in Figure 1.1b. Here the vehicle acceleration v
replaces gravity. The body oscillates about its offset center of mass
and the ball damps the oscillations to the velocity vector., All this
points to the possibility of using a passive damper to accelerate the

convergence of the angle of attack envelope for atmospheric entry bodies.

Early in 1965 a study* was conducted at Aeronutronic which showed that
a passive damper could provide a significant reduction in the angle of
attack envelope for only a small fraction of the vehicle weight. The
damper was similar to the ball-fluid-tube configuration shown in

Figure 1-1. 1In this early study, it was assumed that the vehicle did not

*Auelmann, R. R., "Passive Damping of the Angle of Attack Envelope
During Re-Entry,'" Aeronutronic Publication No. U-3108, 18 May 1965.
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spin, the vehicle and ball motions were coplanar, the angles were small,
and the fluid drag was viscous. Having obtained encouraging results,
it became important to investigate the damper capabilities for a wider

range of applications using a more precise model. The objectives of the

current study were:

(a) to develop a model of the external vehicle-damper dynamics
applicable to spinning entry bodies, large angular motions

and other nonlinearities.

(b) to develop a model of the fluid forces on the ball for the
expected speed regime, and to establish whether sufficient

forces can be obtained using a gas .

(c) to investigate the use of the damper on selected vehicle

configurations.

Prior to this study, there was no evidence that a pendulum damper would
work on a spinning entry body. It was reasoned, that two dampers, ortho-
gonally mounted with respect to the vehicle centerline, would simul-
taneously damp the pitch and yaw oscillations. However, there were
several unknowns; would the precession rate be damped along with the
angle of attack, would the spin rate be affected, or would the damper
introduce an instability or some other unexpected response. Possibly

the damper would be suitable for one class of vehicles but not for

another.
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SECTION 2

DAMPER DESIGN AND OPERATION

2.1 BASIC CONCEPTS

2.1.1 PLANAR MODEL

The basic concepts of the pendulum damper are explained using a planar
model in which the re-entry body and a single damper oscillate in a
fixed plane. The vehicle-damper geometry is shown in Figure 2-1. The
damper ball of mass m travels in a tube with mean path radius R. The
center of curvature (CC) of the tube is located a distance D behind the
vehicle center of mass (CM). The angle & locates the ball within the
tube relative to the vehicle symmetry axis. The angle aL is the maximum
value for a determined by the length of the tube. The angle 6 between

the vehicle symmetry axis and the vehicle velocity vector v is the total

angle of attack. The angles O and a specify the system.

The vehicle experiences an axial force component F, and a normal component

A
FN acting through the center of pressure (CP) as shown in Figure 2-1. These

forces are given by

F = gSC

A A

F = ¢SC

N N

2-1
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where ¢ is the dynamic pressure, 5 is the vehicle reference area, CA is the

axial force coefficient, and CN is the normal force coefficient. CA and
CN are functions of 6, and q is a function of time. An equivalent force

system is obtained by shifting FN to the CM and introducing the torque

Qe = qSlCm

where f is the vehicle reference length and C

n is the moment coefficient.

1

The inertia characteristics of the vehicle are represented by its mass M

and moment of inertia T.

Relative to the CM, the damper mass experiences the inertial force com-
ponents -mFA/M in the axial direction and —mFN/M in the normal direction
because of the acceleration of the CM. In addition, the motion of the ball
is resisted by the force Dy because of the fluid in the tube. Dq is
assumed to be a cubic function of the relative speed Ra, which we repre-

sent by

D, = C.Ra+cC. R alal+c & a

where the Ci are constant coefficients.

The following assumptions are made. First, the velocity vector v is fixed
in direction. Second, m is very small compared to M so that CM is the
effective center of mass of the system., Third, the ball rolls in the tube
without slipping. With these assumptions, the equations which describe

the vehicle-damper dynamics are

6. o c_ = -k[(l-zxcos a+ X2)5+Ca+>x(_2é+d)é.-sin a
) (2-1)
7,202 . "
+ S b (CA sin a + CN'U)]
P 2 a2 , 5 e 22
A+ 25 + b (CA sin @ + Cy cos a) = - 7 (6 -AX0” sin a) (2-2)



where
K - mR°
I
Q2 - qS¥
I
b2 - 5T
7MRE
SDa
.6 = 5
7mR
D
A= R
TN = cos q - A

g

1 - Acos a

These equations are derived in Section 6. The % appearing in certain

terms is due to constraint of rolling without slipping. For statically
stable bodies, Cm is nmegative, at least in the region of small 6. The

function & can be represented by the expression

5=“1d+y2d,!ri§+u%d3
where
5C
1
K = Tim
i 5C,R
H, Tbm
5¢,R2
“3 - 14m

Before Equations (2-1) and (2-2) can be solved, it is necessary to specify
the functional relations between the aerodynamic coefficients (C CN’
and C ) and 6, and between Q and time. The latter relation is determined

by the motion of the vehicle mass center,

2-4




T T BN N N T D T B O E BN B S T e

The basic damper parameters are m, R, D, and the C,. This set may be
i

replaced by an equivalent set k, b2 A, and the y.. In addition to these
> 125

basic parameters, there are oy and the impact elasticity factor €, which
ranges between 1 for a perfectly elastic collision and 0 for a completely
inelastic collision. The discontinuities relating to ar and € must be

treated by side conditions on the basic equations.

The nonlinear Equations (2-1) and (2-2) provide little insight into how
the various damper parameters affect damper performance. The important

tradeoffs are more readily established from the following linear equations:

6 +v20 - -k (1—>»)2‘9'+(1-X)a'
(2-3)
7 2 2 2 2

+§v (bAa+bN6—XbN6)
. . 2 .2 _ .5 ~ 2.2 _
a+2p.1a+v bAa— 7(1 SN:) v bNQ (2-4)
where
2
v =
b2 =
A
2
bN =

with primes denoting derivatives with respect to 6.

2.1.2 TRANSIENT RESPONSE

The characteristic roots of linear Equations (2-3) and (2-4) define the
transient response for a given value of the frequency y. The roots s to

the linear set are defined by the characteristic equation

2-5
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[1+k<1-k)2]sz+v2 [1+51kb2 (1-)9] e @ - n s2 4 L p2 2
N l 5 % by

2

5 .. 2, 2 2
7(1 A) s +va

, S2 + 2#1 s + bi 14

(2-5)
which expands as
d 54 + d s3 + d 2 + d + = 0 (2-6
4 3 2 S dl s ao = 0 (2-6)
where
3 2 2
d4 = 1+ 7 k (1 )
d = 2 L +k (1 - X‘Z]
3 #l . )
2 . 2 .2 2
= ¥ 11 ok - = -
d2 [ + bL\ (1 ) (5 bN le>]
2 [, .7 2
1 = 22U L+ =%k (1 ->2)»p
“l MY sk a-»n 'N]
. 7 - -\
< < / <
do = bAv ( —ngbN)
Equation (2-6) can be regrouped in the form
d s a.\
d‘B s [s° + d—l
4 7 (2-7)
d d
4 2 2 0
s + E s + T
4 4
which is suitable for generating the root locus as a function of the gain
d3/d4. The zeros z, are the root solutions for the numerator to vanish

and the poles p. are the root solutions for the denominator to vanish.
1

By inspection we have
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> (2-8)

~
When the di are introduced into Equation (2-8), one finds that the poles
and zeros (with the exception of z;= 0) are proportional to v and inde-
pendent of pl. Thus, as Vv changes during re-entry, because of the change
in dynamic pressure, the poles and zeros maintain their relative locations

in complex space, usually on the imaginary axis.

Consider the special case when the damper mass passes through the CM,

that is

, when A = 1. The coefficients di then reduce to

d, = 1

ZHy

2 2

o )

2

d1 = 2p1v

2 (1 .2\
\ "5 N}

and the zeros and poles become

d = b?'v
0 A



R

- .

zl = 0

—-— +' \
2y 3 = *iv

= 4 1 2 L 2 : A} 2 2
pl,2 = Ttiv E 1 + bA + E 1l - DA R k bT b

A N > (2-9)

= /. / \ [/, \ .
o s 1 2y 1 2 28, .2 2
Py, = wv \/L (1 + bA) ; ‘\/(1 bA) +5 kb bl

For given damper mass m, the relative

locations of the poles and zeros

are fixed by R. Experience has shown that R should be selected so as to

maximize the spread between the poles and zeros. This is accomplished by
"tuning" R with the equation

b2 1 2
N (2-10)

When Equation (2-10) is satisfied the poles are located at

\
N N e
P,z = Hv Vo B VAR
> (2-11)
133;4 = +iyp “\/fl - '\‘ Z i

~
The effect of varying R while holding m fixed is demonstrated below for the

special case of a spherical re-entry body with offset CM.
2

In this case,
N bA' Now k is proportional to R2 while b2 is proportional to R_l.

o*

-

1 Our example, k = §,0698 when bA = 1. The poles Py and p, are plotted
as functions of b2 in Figure 2-2 for the stated conditions.

at ivand 0,

With zeros
the maximum spread in poles and zeros occurs in the immediate
¢ e 2

vicinity of bA =1,
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Py

Root locus diagrams for the gain 2#1 are sketched in Figure 2-3 for

2 .
bA = 0.25, 1 and 4. These sketches illustrate the significance of spread-

ing adjacent poles and zeros. We define the optimum gein 2Ky for given

frequency v as the one which maximizes the real part of the least stable

b}
=~

Jay%4

2
root of the system. For bA = 0.25, the high f equency pole Py is nearly

equal to z,. 1In this case, the real part of the least stable root (with
. Y . 2 -
optimum gain) is only 0.0275 second. For bX = 4, the low frequency pole
£

Py is close to Z,- In this case, the real part of th

(with optimum gain) is only -0.017 v, For b% = 1. 4

are nearly equidistant from z,. Consequently, the real part

stable root (with optimum gain) is approximately-0.i1 . Tk
o

response for b\ =1 is 4 times faster than for b = 0.25 an¢

faster than for bi = 4,

A

Unlike the poles and zeros, the characteristic roots do not maintain the

same relative positions as ¥ changes during re-entry. The reason is that

the root locations depend on the damping coefficient U,, which is independent
1, !

of y. The sketches in Figure 2-4 show the relative roor locations as

tunctions of V for two difierent By The solid lines are root locus plots
2
£or the gain 2#1 with u; = 1 for four different v. The dushed lines

join the root locaticns for two specific p,. These sketches show that the

-

smaller By provides faster damping at small v and slower damping at large V.

2.1.3 ENERGY SINK APPROXIMATION

The transient analysis of the previous section gives no indication of the

response when vV is a function of time. To do so one mnst o in

t

I

0¢

rate a
linear set of equations with time variable coefficients. Under the assump-
tion of slowly varying V, we obtain approximate solutions to Equations (2-3)

and (Z2-4). We call this method the energy-sink approximation.

2-10
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First we assume that the stored energy in the damper is negligible com-

pared to the vehicle energy

E = lI (92+v2

. 6%) (2-12)

The time rate of change of energy can be expressed as

E = 1wV 6% + L (2-13)

where ED is the rate of energy dissipation caused by the damper.

When k < <1, a solution to Equation (2-3), which is valid for short
periods of time, can be obtained by setting k = 0. One then has

6 = ee cos (Vt + X)

. (2-14)
6

-'Uee sin (¥t + X)

where ee is the maximum displacement of 6 during an oscillation and X is

the phase angle. The average values for E and E are defined by

x| ‘\
1
<E> = o E d (vt)
2T
. l e .
S = =
<E> = j Ed (wt)
§ p
Introducing Equation (2-14) into (2-15) we obtain
<E> = +1v?e? (2-16)
2 e
KE> = f1vv 6 +<E > (2-17)
S22 e D
Differentiating <ED> with respect to time and equating the result to
Equation (2-17) we obtain
) 5 <E>
6, = -55 6 +t—F— (2-18)
e 2V e I v2 6

e

2-13




The first term on the right-hand side gives the envelope decay rate

caused by the change in v,

decay rate caused by the damper.

The damper dissipates energy at the rate

To evaluate @, we [irsi use
express the right-hand side of E

time:

.. ) 2 9
a+2p.10£+bAv a = K g, cos (¥t + X)
where

5 2 2
K = = -1 +n3tv

The steady-state solution to Egquation (2-20) is

[/

ﬁ>
a = -k & -

Z

L= ]

»

V7 cos (yt + X) + ZHl‘Vsin (ve + X)

\
e 7 B
.2 4,22
) - 1 4
( N *) v+ WV

-
2 2
bA -1 VT osin (vt + X)) - Zpl1lcos vt + X)

@ = Kgvw >
© 02 )Tyt L2 02
b, -1 4
A K
The average value of the steady state solution Q is given by
2 42
K™ 67/2
e dz _ e
LAT> = .

2-14

while the second term gives the envelope

J L

-

(2-19)

Lhe short-term solutions, Equaticn (2-14), to

quation (2-4) as an explicit function of

(2-20)

(2-22)
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In the energy-sink approximation, dz in Equation (2-19) is replaced by

<ay.

So doing we obtain

2

. %mRz B (X—l)+b§]ulva 92
KE > = - (2-24)

D 5 2 )

- Ve
Using this relation, Equation (2-18) provides
7[5 2Py 2

. 5 gk[7(x-1)+bN]“1V
6, = - {55+ 6 (2-25)

2 e
2 2 2
(gA - 1) Ve o+ aul

To solve Equation (2-25), it is necessary to specify the functional rela-
tion between v and t. Above the point of peak dynamic pressure, the
vehicle velocity v can be treated as a constant., For an exponential

2
atmosphere ¥V~ can be expressed as

2 2 ct

= Py
v vo e ( 6)
where

c = B vsiny

B is the reciprocal of the atmospheric scale height and <y is the angle

between v and the horizontal. Differentiating V we get

Vo= %cv (2-27)

which, together with Equation (2-26), can be used to obtain

2
d 8 Zk[é (?»-1)+b2](2p. /ey
e 1 5 7 N 1
= -{=— + . . f (2-28)
dy 2v ) 2 ) 2 e
(bA - v o+ 4“1
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Equation (2-28) is of the form

d 9

ee = - ;—v+ 5 hv,) 5] dv (2-29)

e VT o+ a“ Hl
where

7 5 2
L3 k [7 (A - 1) + bN] (2#1/0)
B 2
b2 -

2 16
a = , 5
The solution for ee is

1/2 e . )2 h/2

o) v Fo(ay, /
Z_ (1_?> 1 0 2 (2-30)
‘eO (vao) +-(apl/u0)

where the zero subscript denotes initial values.

2

. r4

The solution is indeterminate when bA = 1, the tuning condition for the
mean path radius R. In this singular case, we replace Equation (2-29) by
d ee 1 )
= -1l5= + pyldv (2-31
g v TP
e
where

]
<

k[7 (X—l)%—bN]
8p1c

U‘l]\l
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The solution to Equation (2-31) is

D

5 v (2-32)

e
¢]

Comparisons were made between the envelope solutions predicted by the
energy-sink approximation and numerical solutions to Equations (2-3) and
(2-4). The vehicle considered was a sphere with offset CM. Figure 2-5
shows the comparison before the damper is added to the vehicle. The
predicted envelope is the familiar quarter-power decay with dynamic pres-
sure. The agreement is excellent. Figure 2-6 shows the comparison when
a nonresonant damper bi = 1.52), passing through the CM (X = 1), is
added to the vehicle. The agreement is good. Figure 2-7 shows the com-
parison when a resonant damper bi = 1), also passing through the CM, is
added to the vehicle. Again, the agreement is good. The values for k,

Py €5 and y, are listed in the figures.

The parameters k, A, and b; only enter into Equations (2-30) and (2-32)

through the factor

2
ke = L fg (A - 1) + b2] (2-33)
5 L7

N

which should be maximized to obtain the fastest convergence for 6, If k*
is negative, 6, will diverge. The form of k* indicates that the damper
should be located as far aft of the CM as possible, that is, A should be
maximized. The size of k is determined by m and Rz, but R cnters through
other terms in Equations (2-30) and 2-32). 1In fact, the transient analysis
of Paragraph 2.1.2 indicates that R should be picked to satisfy bi = 1.
This means that k can only be increased by increasing m. The only other
parameter in k" isbé. For a spherical re-entry body b2

2 .2 9N
N bA cot 6% using Newtonian

= bi while for
a slender cone with half-cone angle Q:, b

theory.
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Now consider the effect which “1 has on the motion. Equation (2-32) says
that the decay rate increases when By decreases. However, this relation
cannot be carried to the limit, #1 = 0, 1In obtaining the solutions of
Equations (2-30) and (2-32) we approximated the complete solution to
Equation (2-20) by the steady-state portion of the solution. This
approximation is valid only if the transient response caused by the change

n Y

in ¥V is rapidly damped

apidly n , im

This difficulty arises only for the resonant solution. Equation (2-30)
does not suggest that “1 be made arbitrarily small. Rather it shows that
for small #1’ 6, converges rapidly at low ¥V and slowly at large y; and
conversely for large #1. This effect is illustrated in Figure 2-8 where
solutions are shown for three cases. The cases differ only in the relative
size of #l’ which is successively doubled in Cases A, B, and C. This

result is qualitatively predicted by the transient analysis (see Figure 2-4).
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2.2 NONLINEAR EFFECTS
2.2.1 LARGE ANGLES AND IMPACT DISCONTINUITIES

The linear model suggests that a damper be designed along the following

guidelines:

(1) The mean path radius R should be selected so

as to satisfy the condition b = 1. This
condition amounts to "tuning' the damper
natural frequency to the vehicle natural

frequency v.

(2) The damper should be located as far aft of the

CM as possible, that is, X should be maximized.

(3) No optimum condition for the damping coefficient
B can be specified, because K, is independent
of ¥. Rather small #l tends to be more effec-
tive at small v and vice versa.
When g and o are large, these guidelines may not be entirely correct. The
aerodynamic coefficients CA’ CN’ and Cm are nonlinear functions of §. The

fact that CA may increase by factors of three or four, or may change sign,

2

suggests that "tuning' is not as important as indicated by the linear model.

The angle @ indirectly affects the amplitude of the ball oscillations.
Practical considerations dictate that an upper limit aL be placed on the
ball displacement angle a. When @ is large, the ball will impact the ends
of the tube, thereby introducing transients into the system. This effect

can be quite detrimental, especially for nonspinning entry bodies,

The impact discontinuities are handled in the digital programs (Section 7)

by the side condition
a = - € & (2-34)

at the limits. The constant € ranges between 0 for an inelastic collision

and 1 for an elastic collision. Intermediate values for € can be assigned.
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In all cases the best performance results whene= 0. This seems logical;
first because transients are minimized, and second because the energy

dissipated upon impact is maximized.

The effects of large 9 are illustrated for the vehicle-damper combination
shown in Figure 2-9. The vehicle is a 2-foot diameter sphere which weighs

25 pounds. The pitch inertia I is 0.5 slug ftz. CA and CV are equal to 1

for a sphere, Taking the reference length £ as the distance between the
CP and the CM, we have £ = 0.2 ft and C, = -l. With this choice of {, the
parameter Li is given by
b2 - 4,2 51

A 7 MR

The tuning condition, bi = 1, is satisfied by R = 2.29 ft. Since the ball
passes through the (M, k,= 1. The ball weighs 0.43 pound, fixing k at
0.0698. The angle limit aL = 23 degrees is set so that the tube does not
extend beyond the sphere. The impact parameter € is 0 and the linear

-1

damping coefficient yl is 2 sec ~,

To integrate Equations (2-1) and (2-2), it is necessary to specify the

[¢]
]
9
:
i
:
m
I~ j

felution betwe anid FOor a constant velocity through an exponential

] 2 . .
atmosphere, §2° is of the form

2 2 ct
7 = Q e
o
i 2 . -1
in this cxample, we set @ = 0.1 and ¢ = 1 sec -,
o

The ball starts at rest in the center of the tube and the vehicle starts at
an initial angle of attack of 150 degrees. The resulting vehicle and
damper motions are plotted in Figures 2-10 and 2-11, respectively. Two
scales for the independent variable are shown; a linear scale for the non-
dimensional time ct, and a logarithmetic scale for the T = 2Q/c. Despite
the impact discontinuitics, evident in Figure 2-11, the damper effectively
reduces the angle of attack oscillations. This may be seen by comparing

O with the envelope curve when the damper is removed.
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The values of R which satisfy bi = 1 tend to be very small (even on the
order of the ball diameter) for slender re-entry bodies. Here the linear
model is completely inadequate, because even moderate values of § tend to
drive o past 90 degrees. Since the motion can be unstable for q greater
than 90 degrees, and since the response tends to be slow near 90 degrees,

it is expedient to limit g to approximately 60 degrees.

Unfortunately, when R is very small, the path len:

gt ween stops is too

short to be effective. The oaly recourse is to discard the tuning constraint,
bi = 1, and to select a larger value for R. The linear model indicates that
the damper performance will dro op decisively if this is done. Consequently,
one might conclude that the pendulum damper is better suited to blunt

vehicles than to slender vehicles. That this conclusion is not necessarily
correct may be seen by examining k* defined in Equation (2-33). Here bi

and A are seen to he as important as R. First, b; may be an order of
magnitude larger for a siender body than for a blunt body. Second, the

geometry of a slender body permits large values for A, while the geometry

o ~ A S ;
for a blunt body does not.

jective of the study wes to demonstrate the us e of two
orthogonally mounted pendulum dampers on a spinning re-entry body., This

problem is dealt with specifically in Sections 3 and 5.

At the beginning of entry, when the dynamic pressure q 1s small, the
centrifugal force forces the damper balls to the ends of their respective

tubes. The force driving the ball against the limit is given by

2 . S . q S .
FT = m (?%ZR sin aL - ﬂﬁ_ C¥> cos aL sin ¢ - v CA sin aL (2-35)
where w, is the component of angular velocity about the symmetry axis, and

Y is the angle between the damper plane and the plane of the angle of
attack. The terms dependent on ¥ are almost periodic, ¥ being a monotonically

increasing or decreasing function of time.
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When FT becomes negative, the ball moves off the limit and begins to
oscillate about @ = 0. This point depends on q, 6, and aL. Once the ball
begins to oscillate, it will only occasionally return to the limits and
then with low velocity. Consequently, the nature of the impact, as char-

acterized by €, is less critical for spinning bodies than for nonspinning

bodies.

As long as FT is positive the ball sits on the limit. TIn this

LS S 8 4 & ]

(l.
l"f

the balls and the vehicle move as a single rigid body with a principal axis
misalignment and a center of mass displacement. The principal axis
misalignment causes the vehicle to cone about the instantaneous angular
momentum vector. The cone angle may be quite large if the dampers are

located far aft of the CM, as would normally be true.

In most cases, the effect of the CM displacement is unnoticable. However,
it could be more serious than a principal axis misalignment. Pettus* and
other investigators have shown that a CM offset can cause a roll resonance
and a divergence of the angle of attack envelope. The point of instability

is predicted by the equation

2 J\ 2
14 = (]_ - T) (DZ (2-36)

. . . . 2 .
where J is the moment of inertia about the symmetry axis and V¥V 1is pro-

< o e e £ T L~ e N A Ve B i e f\fm\~ﬁ
ional to g. A potential inmstability exists if Equation 30) 1

tisfied while FT is positive. However, even under these conditions the
instability is probabalistic in that certain phase relations must also be

satisfied.

7“Pettus, J. J., "Persistent Re-entry Roll Resonance," AIAA Preprint
No. 66-49, AIAA Third Aerospace Sciences Meeting, New York, January 1966,
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If the initial coning motion caused by the principal axis misalignment is
unacceptable or if the instability condition cannot be avoided, the balls
can be caged in the centers of their tubes until q is sufficiently large
that the balls will not return to the limits when uncaged. This expedient

eliminates both problems, but it also adds some complexity to the damper

system,
2.2.3 NONLINEAR FLUID DRAG

The drag on the damper ball as it moves through the fluid in the tube can

be expressed as

where p is the density of the fluid, U= R ¢ is the relative ball speed,

d is the ball diameter and CD is the drag coefficient. TFor the speeds U

cncountered with practical damper designs, CD depends only on the gap
ratio
N Inside tube diamcter - 4
/\' =
23 d

and the Reynold's number

U d
Ra = &

where (; is the kincmatic viscosity of the fluid.

For viscous drag CD is inversely proportional to U, and Da is directly

proportional to U. The assumption of viscous drag is only realistic for
low Reynold's numbers. Since Reynold's numbers as large as 104 are reached
in practical damper designs, it was necessary to determine the CD - Rd
relations for different gap ratios Ag. An analytical and experimental

3

program (Section 8) was undertaken with this objective in mind. The CD -~ R

d
curves of immediate interest to us are plotted in Figures 8-1, 8-8, and 8-9,
For Ag<:0.04 the theory and the experimental results are in close agreement .
For convenience we have used the theoretical (solid line) curves in our

calculations.
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The procedure for selecting Ag and the coefficients Ky is described as

follows:

(1) Compare damper performance for different #l’
with #2 and #3 set in equal to zero, using

the digital program.

(2) Select the near optimum M, and note the maxi-
mum ball velocity. Calculate C1 and plot
Da = C1 U to the maximum value for U.

(3) Select a gas at a given temperature. This

fixes p and u.

(4) Using Figures 8-1, 8-8 and 8-9, select the
gap ratio Ag and generate the actual (non-
linear) Dy curve which approximately fits the

linear Da curve,

(5) Select Cl’ C2’ and C3 which provide the best
cubic fit to the actual nonlinear Dy curve.
Convert the Ci to the K, for use in the com-

puter program,

(6) Compare damper performance using the linear

and the cubic drag laws.

This procedure was followed in this report. The performance differences
between the linear and cubic damping law proved to be small in all the
cases., Furthermore, we found the damper performance to be relatively
insensitive to the pi; deviations on the order of the coefficients being

acceptable.

There is a practical lower limit on kg’ near 0.003, because of fabricatjion
difficulties, If this limit is approached, it would be desirable to use a
more viscous fluid or to pressurize the gas. This was unnecessary in the

cases considered.
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Again consider the vehicle-damper combination shown in Figure 2-9. The

run shown in Figures 2-10 and 2-11 was based on the linear drag law

Dy = Cl U where C, = 0.075 1b sec/ft. The maximum ball speed was 13.4 ft/sec.

2
Using air with a density £ = 0.00237 1b sec”/ft and a kinematic viscosity

! 2
Mo=1.52 x 107" r¢ /sec, and a gap ratio Xg = 0.01, we obtained the non-

linear drag law shown in Figure 2-12. A cubic fit to the nonlinear law

Also shown in Figure 2-12 is given by Dy = C, U+ C. U IUI + C, U3 where

C1 = 0.04 1b sec/ft, C, = 0.004 1b secz/ft2 and C3 2 x 1077 1b Secj/ftj.
The corresponding values M, = 1.07 sec_l, K, = 0.245 and #2 = 0.0028 sec

oo

were used to generate the vehicle-damper performance curves in Figures 2-13

and 2-14, The differences between these results and those given in

Figures 2-10 and 2-11 are negligible.
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(POUNDS)

FLUID DRAG, Dy

2.0

NONLINEAR LAW:
A, = 0.01
8 2 4
P = 0.00237 POUNDS SEC”/FT
L= 1.52 x 10°% Fr2/sEC
//
15}
CUBIC APPROXIMATION
(RUN 3A)
1.0}
0.5
0 I |
0 5 10 15
RALL SPEED, U (FEET/SECOND) F03217 U

FIGURE 2-12, LINEAR AND NONLINEAR FLUID DRAG LAWS
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SECTION 3

AMES MARS ATMOSPHERIC PROBE

3.1 VEHICLE DESCRIPTION AND ENTRY DYNAMICS

In 1965, A. Seiff and D. E. Reese Jr., of Ames Research Center (NASA)
described the use of a spherical entry body as probe for determining the
characteristics of the Mars atmosphere.* The '"Ames probe' has since
evolved into the design shown in Figure 3-1. The vehicle mass M is

1.18 slugs, the roll moment of inertia J is 0.624 slug ft2 and the pitch

2
(and yaw) moment of inertia I is 0.472 slug ft

The axial force coefficient CA, the normal force coefficient CN’ and the
moment coefficient Cm with respect to the vehicle mass center are plotted
as functions of the angle of attack g in Figures 3-2a, b, and c, respec-

tively. The reference area S is 5.07 ft2 and the reference length f is

2.54 ft. The dashed curves in these figures are the trigonometric
approximations
CA = 1.31 - 1.184 sing+ 0.072 sin 29 + 0.3233 sin 39 - 0.05 sin 46

7\‘Seiff, A., and Reese, D. E., Jr., "Defining Mars' Almosphere - A Goal for
Early Missions,'" Astronautics and Aeronautics, February, 1965, pp 16-21.
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DASH LINE: APPROXIMATION
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FIGURE 3-2a.

30
ANGLE OF ATTACK, 6, DEG

AXTAL FORCE COEFFICIENT (AMES PROBE)
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L = 2.54 FT
0.1+ .
0 1 1 L 1 L i 1 ]
0 30 60 90
ANGLE OF ATTACK, 8, DEG
F02928U
FIGURE 3-2b. NORMAL FORCE COEFFICIENT (AMES PROBE) ,
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S = 5.07 FT° -
f =2.54 FT
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FIGURE 3-2c. MOMENT COEFFICIENT WITH RESPECT TO

THE MASS CENTER (AMES PROBE)
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N 0.4485 sing - 0.0595 sin 36 + 0.06 sin 46

C
m

-0.116 sin@ + 0.019 sin 26 - 0.073 sin 36 + 0.0185 sin 46

used in the computer program.

The contractor has furnished two models for the Mars atmosphere; a minimum
density "A" atmosphere with surface density R.=1.3x 10_5 Slug/ft3 and
scale height B_l = 21,300 ft, and a maximum density "B atmosphere with
surface density £ = 6 x 1077 Slug/ft3 and scale height B'l = 45,900 ft.
The density profiles for the A and B model atmospheres along with NASA
Model 3 atmosphere (from NASA TN D2525) are shown in Figure 3-3.

Three entry conditions were considered:

(1) A direct entry into the A atmosphere with

21,300 ft/sec, )g = 90 degrees and,
291,080 ft.

A%
o}

o
(2) An indirect entry into the B atmosphere with
21,300 ft/sec, '% = 50 degrees and,
746,820 ft.

<
l

=
I

(3) An orbital entry into the A atmosphere with

v = 12,000 ft/sec, Y, = 20 degrees, and
= 315,000 ft.
0
All three entry conditions satisfy the relation 2Q/c = 1.

The vehicle spins at 30 rpm and has an initial angle of attack of 40 degrees.

L 1
10T VCiCC

ity v, the dynamic pressure q, and the angle of attack g are
plotted as functions of altitude in Figures 3-4, 3-5, and 3-6 for the above
three entry conditions. The angle of attack is seen to converge with

increasing q and diverge with decreasing q.

The use of a passive damper to accelerate the convergence of the Genvelope

is examined in Paragraph 3.2.
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VELOCITY. v (103 FT/SEC)
10 15

20 25
| I | f [ ]
DYNAMIC PRESSURE, q (LB/FT)
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FIGURE 3-4. VELOCITY, DYNAMIC PRESSURE AND ANGLE OF ATTACK
PROFILES FOR A DIRECT ENTRY INTO THE ATMOSPHERE
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ALTITUDE (10°FT)
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FIGURE 3-5, VELOCITY, DYNAMIC PRESSURE, AND ANGLE OF ATTACK
PROFILES FOR AN INDIRECT ENTRY INTO THE ATMOSPHERE

3-8




R BN B

3
VELOCITY, v (10~ FT/SEC)

0 5 10 15 20 25
l I l I I |
DYNAMIC PRESSURE, q (LB/FTZ)
0 20 40 60 80 100
320
| I T T
300 —
__ 200 -
=
F
[3g}
[
—
a
o]
&
=
]
<
100 |— o) —
v
q
0 I | | |
0 10 20 30 40 50
ANGLE OF ATTACK, & (DEGREES) FO3349 U
FIGURE 3-6. VELOCITY, DYNAMIC PRESSURE, AND ANGLE OF ATTACK

PROFILES FOR ORBITAL ENTRY INTO THE ATMOSPHERE

3-9




\

N\

\

3.2 DAMPER DESIGN AND TRADEOFFS

3.2.1 NOMINAL DESIGN AND DAMPER LOCATION

The nominal damper design for the Ames probe has two tuned dampers

orthogonally mounted with respect to the vehicle centerline.

Both dampers
are identical.

A full-scale drawing of one damper is shown in Figure 3-7.

A 1.52 inch tungsten-carbide ball moves along a mean path radius

p——
/

n c [
n =

2 inches in a tube which length is a little more than 8 inches.

The angle limit aL is 25 degrees and the end restraints are inelastic

(€ =0).

N
Y

The estimated weight of each damper is 1.22 pounds. The ball weighs
1 pound based on a density of 0.545 1b/in.3 An 8 inch length of 0.03 inch

aluminum tubing weighs 0.17 pound and the end stops weigh 0.05 pound.

The nominal design has an inertia ratio k = 0.0227 and a frequency ratio
2
b° =

0.191. The near optimum linear damping coefficient #l was found to
be 2 sec-1

Four damper locations, specified by D = 2.74, 7.05, 11.05, and 15.7 inches,

are pictured in Figure 3-7. 1In Paragraph 2.1.3 we showed that the damper

performance is related to the effective inertia ratio

2
7[5 2
k* = =k = (2-1 2-
s L7 ( )y o+ bn] (2-33)
where bi = 0.437 for the Ames probe. For the nominal damper design and

the four damper

locations we have

D= 2,74 in. A = 0$.388 k% = 0

D =7.05 in. A=1 k* = 0.00617
D =11.05 in A= 1.565 k* = 0.0224
D =15.70 in. A= 2,27 k* = 0.057

Linear analysis predicts that a damper at the forward location (N = 0.388)

would have no effect, and that damper performance improves as the damper

1s moved rearward. The nominal damper location in this study is defined
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by A= 1.565. There is some question whether more rearward locations

could be adapted.

In a two-tube design, one damper must be forward of the other damper, that
is, Kl # kz. However, in all but one run, we made the approximation that
kl = Xz. In the one exception (Run 25) we set Kl = 1,565 and AQ = 1.765
to provide the proper tube offset. The difference between Run 25 and

the corresponding Run 13 with Xl = XZ = 1.565 was negligible,

- The damper performances at the above four locations are compared in

Figure 3-8 for a vertical entry into the A atmosphere. In this figure,
the total angle of attack g is plotted as a function of altitude, These
results substantiate that performance improves as the damper 1is moved

rearward,

The ball motions o, and &, are plotted as functions of altitude in
Figures 3-9 (a through d). The balls leave their limits (aL = 25 degrees)
at approximately 160,000 feet and do not return to the stops, which

indicates that the choice of the impact parameter ¢ is academic, The ball

motions are larger for larger A, as would be expected,

Returning to Figure 3-8, we note that the vehicle undergoes a large
amplitude oscillation above 160,000 feet, Furthermore, the amplitude of
the oscillation varies directly with A and changes phase at A= 1, This
wobbling is due to the effective principal axis misalignment when the
balls are at the limits. The initial amplitudes agree exactly with the
predicted free coning motions of an Euler top. This effect can be
reduced by reducing X to 1 or by reducing @

the damper performance at low altitudes,

In Paragraph 2.2.2, we commented that roll resonance is a possibility if
the balls have not left their stops when the linear pitch frequency v

satisfies the relation

2 N 2 ]
V - <l"I) wZ (236)

J=12

Both "fixes'" adversely affect
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Since only imaginary values of v satisfy Equation (2-36) when the inertia

ratio J/I is greater than 1, we conclude that roll resonance is no problem

for the Ames probe.

Figure 3-8 exhibits another striking feature; @ is damped to a trim angle

of 1.25 degrees and no farther. The damping of 6 to a small trim angle is
characteristic of the damper performance on a spinning entry body. When the
trim angle is reached, the precession rate é is rapidly reduced in magni-
tude. This is illustrated in Figure 3-10 where the envelope of é is

plotted as a function of altitude for Run 13" Meanwhile, the spin rate

w, remains nearly constant during entry.

3.2.2 EFFECT OF DAMPER CURVATURE
The mean path radius R for the nominal "tuned" damper is 7.05 inches. The
effects of doubling and halving R are examined in the following. A long
radius tube with R = 14.1 inches and a short radius tube with R = 3.525 inches
are shown (in slightly reduced scale) in Figure 3-11. The angle limits,

G = 12.4 degrees for the long radius tube and 5

L

9.3 degrees for the short
radius tube, were specified so that the maximum ball excursion R sin a

¥l

from the symmetry axis is the same as for the nominal design. All other

parameters were held fixed with respect to Run 13.

The angle of attack profi

o

es for the long (Run 31), tuned (Run 13)

1)
2.

and short
(Run 32) radii tubes are plotted in Figure 3-12. The corresponding values
for k, b2, A, and aL are listed above the figure. The importance of tuning

is dramatically illustrated in this figure.

The ball maoriane for :
+0% O4dii MOTions CT nun
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FIGURE 3-12. EFFECT OF TUBE RADIUS OF CURVATURE
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The only effect of halving Hl is to increase the trim angle to 2 degrees,
While these perturbations about the nominal are noticable, they are none-
theless small when compared to the @ solution without a damper. The ball
motions for My = 1 sec-1 and #1 =4 sec_1 are shown in Figures 3-15a and b,

respectively. As would be expected, the amplitudes of the ball oscilla-

tions vary inversely with “l'

With the nominal #1, the ball reaches a maximum speed U of 3.67 ft/sec.

In Figure 3-16 we have plotted:

(1) The nominal linear fluid drag law
= 11 sher C = .
Dy ¢, U, where C, 0.174 1b sec/ft
for ball speeds up to 4 ft/sec.
(2) The nonlinear fluid drag law for air and
a gap ratio A, = 0.0195. The method for
obtaining this curve is described in Para-

graph 2.2.3.

(3) A cubic approximation to the nonlinear drag
law based on the equation

L 3
D, = C. U+ C UiUf—‘rC3U

where C} = 0.06591 1b sec/ft, Cy = 0.04624 1b sec2/ft2
and C3 = -5,42 x 10"3 1b sec3/ft3.

a 1 2

The corresponding computer parameters are
By = 0.754 Sec—l, Hy = 0.311 and
#3 = -2.14 x 10™% sec.

3-24

3.2.3 FLUID DRAG PERTURBATIONS
The effect of varying the linear damping coefficient Ky is illustrated in
Figure 3-14. With the nominal value, ul =2 sec_l, @ reaches a trim angle
of 1.25 degrees at 68,000 feet. When Nl is doubled, & reaches a slightly
smaller trim angle of 1.10 degrees but at a lower altitude, 57,000 feet.

!
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FIGURE 3-15b. BALL MOTIONS FOR 4, = 4 SEC™ (RUN 24)
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We compared the damper performance using the above 4 (Run 34) with the
damper performance using Hl = 2 Sec—1 (Run 13). The results are practically
the same except that the trim angle is slightly larger using the non-

linear damping law (1.93 degrees compared to 1.25 degrees).

3.2.4 TUBE LENGTH AND IMPACT COEFFICIENT

The effects of reducing o while holding R fixed are illustrated in

Figure 3-17. At high altitude when the balls are caged against their

stops, the coning amplitude varies in almost direct proportion to a -

In this respect, it is beneficial to reduce aL. However, the altitude at
which § reaches the trim angle decreases as ap decreases below some critical

value near 20 degrees. The trim angle itself is unaffected by the reduc-

tion in .
%,

The ball motions for o = 18.8, 12.5 and 6.25 degrees are plotted in
Figures 3-18a, b, and c, respectively. The slower decay to the trim angle
is explained by the fact that the balls impact the stops earlier in their
oscillations as a.L is reduced. For aL = 18.8 degrees, the balls barely
toiich the stops, which is why the @ traces for aL = 25 and 18.8 degrees

are almost identical at low altitudes.

The impact parameter € is unimportant if the balls do not hit the stops.
The effect of varying € between O and 1 is illustrated in Figure 3-19 for

a case (aL = 12.5 degrees) when the balls do hit the stops. The rate at
which @ approaches its trim value is seen to decrease as € increases, which

Supports our earlier contention that the impact should be as inelastic as

possible.
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3.2.5 OTHER ENTRY CONDITIONS

The previous results were for a direct entry into the A atmosphere. There
is every reason to believe that the nominal damper design will perform

equally well under other entry conditions.

In Figure 3-20, we compare the angle of attack profiles with and without a
damper for an indirect entry into the B atmosphere. The corresponding
velocity and dynamic pressure profiles were presented earlier in Figure 3-5,
The damper trims the angle of attack to less than 2 degrees well before peak
dynamic pressure and holds it at the trim angle until impact. The ball
motions are shown in Figure 3-21. All the activity occurs between 400,000

and 220,000 feet.

A similar angle of attack comparison is made in Figure 3-22 for an orbital
entry into the A atmosphere. The velocity and dynamic pressure profiles

were presented in Figure 3-6. The ball motions are shown in Figure 3-23.
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SECTION 4

THE GODDARD MARS ATMOSPHERIC PROBE

17

4.1 VENHICLE DESCRIPTION AND DYNAMICS

The Goddard Needle-Nosed Probe (also designed for the penetration of the

Mars atmosphere) is shown in Figure 4-1., The vehicle mass M is 1.88 slugs,

the roll inertia J is 0.030 slug ft2, and the pitch (and vaw) inertia I
9]
is 1.470 slug 1t

[

The aerodynamic coefficients Cas Cys> and Cp along with the trigonometric

approximations

C

1l

A -0.3184 + 0.454 sin 9 + 0.104 sin 26 - 0,086 sin 30
-0.03 sin 46 + 0.442 cosg

Cy = 3.75 sin § + 0.053 sin 26 - 0.53 sin 38

C

m -1.83 sin O + 0.239 <in 20 + 0,092 sin 20

3
uuuuu O eIl

are plotted as functions of the angle of attack 6 in Figures 4-2a, b, and c,

respectively. The reference area S is 0.56745 ftz,
£ is 0.850 foot,

and the reference length

4-1
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The ballistic coefficient M/(CDS) for the Goddard probe is 27.2 slug/ft2
compared to 0.18 slug/ft2 for the Ames probe. Because the ballistic
coefficient is reclatively large, the vehicle velocity can be treated as a
constant even for entry into the B atmosphere. This is easily verified.

The velocity ratio is given by

y - Lo
Vo
where

CDS/M
L —_—

28 sin?Y

For a 90 degree entry in the B atmosphere, L = 850 ft3/s1ug, and at the
surface Lp = 0.051, which indicates that the impact velocity is 95 percent
of the entry velocity. The percentages are even larger for entries into

the A and the NASA Model 3 atmospheres,

For a constant velocity entry into an exponential atmosphere we have
2 2 ct . c
Q" =0, o - £ (4-1)

where ¢ =8 v sin Y. With T = 2Q/c as the independent variable,

Equations (2-1) and (2-2) can be expressed as

2 2
‘g 1 dg ( 2) a‘g 1 de
S +==-C = -k|{1-2Xcosa + M) &2 42 <O
=
dTZ T 4T m dT2 dT
2
of d a 1l da de do \ da . _
+G — + T a7 + A (2 1T + a?:) 3T sin o (4-2)
aT -
7 .2 .
+ S b (CA sin @ +—CN n )
a1 Yo da | da da >
o2 T\t ) e M, i d—T”f”s” ar
(4-3)
5 [a% 0 1 do 5(d9}2 2( .
=--7.§.._2. = 7 = + T \ar sina - b CASLna+CNcosG.



Equations (4-2) and (4-3) indicate that a single solution applies to all

values of ¢, provided that the nondimensional damping coefficients Hl/c,

Ho, and Us3c, rather than the Hi, are trecated as basic parameters.

The atmospheric density p is related to T by the equation

2 2
o= I_ﬁZSTm_“/ 72 (4-4)

For a 90 degree entry into the A atmosphere, Equation (4-4) provides

;)Gﬂug/ft3>:: (3.36 X lO_9 slug/ftJ) T2 (4-5)

This relation also applies to the NASA Model 3 atmosphe

since its scale h

re above 80,000 feet

eight is the same as for the A atmosphere, Equation (4-5)

b

and the density-altitude profiles in Figure 3-3 were used to obtain the

altitude-T curves in Figure 4-3, Figure 4-3 shows that impact for a direct

entry through the A atmosphere occurs at T = 62.5.

The design entry condition for the probe is @ = 155 degrees at T = 1 with

no initial rates, including spin. The angle-of-attack profile is shown

figure 4-4 as a funccion T By T =

L=t

in 62.5, the vehicle has gone through
0

ju—

5 el oo ~ o ] a0 fvelone hac dancerad 77 decroanma
-2 LyCies ana tne & clvelope nas aecayed to 23,7 daegrees
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4.2 DAMPER DESIGN

4.2.1 INTRODUCTION

Six pounds are allotted for a damper in the Goddard probe. This allows for
two 2.1-inch diameter tungsten-carbide balls, each weighing 2.65 pounds
and 0.35 pound for each tube. Presumably, the fluid would be a gas. The

design of such a damper is detailed in Paragraph 4.2.3.

Since the vehicle has zero-spin rate, the angle-of-attack oscillations are
nearly planar. Deviations from planar motion are due to pitch and yaw

rates at entry. However, these effects diminish during entry as the dynamic
pressure increases. All this suggests that a single ball which is free to
move on a spherical surface would tend to oscillate in the vehicle plane of
oscillation. Such an "omnidirectional damper makes the most efficient

use of the damper mass,

The main problem is to develop the required fluid drag without incurring a
large weight penalty. Since a gas cannot be used in an omnidirectional

damper, the volume of fluid must be minimized.
4.2.2 OMNIDIRECTIONAL DAMPER

Three damper designs were tried before a suitable one was found., Design 1
is a tuned damper with R = 0.905 inch. A 2.5-inch diameter tungsten-
carbide ball weighing 4.46 pounds rolls in a liquid bath inside a 2.155-inch
radius spherical shell, The estimated weight of the fluid and shell are
1.22 pounds and 0.18 pound, respectively. The CC is located a distance

D = 19.6 inch aft of the CM. For this design, k = 0.00054, b2 = 8.7,

and A = 21.6.

The planar computer program was used to evaluate the damper performance
for various combinations of @, €, and pl/c. The best results were

obtained with @ = 60 degrees, € = 0, and ul/c between 0.5 and 2, With
this design, the 6 envelope is damped to 12.5 degrees (compared to 23.7

degrees without a damper) by T = 62.5. The reason for the only average
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performance of the tuned damper is that the ball path length is only

2 inches between stops. With large vehicle oscillations, the ball hits

the stops almost before it gets started.

Designs 2 and 3 use the same ball as Design 1, but the path radius R is
doubled in Design 2 and doubled again in Design 3., The problem of pro-
viding the necessary fluid drag for less than 1.5 pounds is considered
later. For Design 2, k = 0.00216, b2 = 4,35, A = 10.8, €= 0, and

aL = 60 degrees. The damper performance is illustrated in Figure 4-5 for
the case when o is only 1 degree. The O envelope is completely damped in
three cycles. We considered this case first, to show just how effective
the damper is when the amplitudes are small and the ball does not hit the
stops, The damper performance with O, = 155 degrees is illustrated in
Figure 4-6. A comparison between Figures 4-5 and 4-6 indicates the
detrimental effect of hitting the stops. Still, the § envelope is reduced
to 5.9 degrees by T = 62.5, which is twice as good as Design 1,

Even better results were obtained with Design 3 for which k = 0.00864,
b2 = 2,175, A = 5.7, € = 0, and a,

0

60 degrees. The results shown in

Figure 4-7 were obtained with Hy/c =2. Theog envelope is essentially

eliminated in six cycles or by T = 52,

Having established a suitable set of damper parameters, the problem of
providing the required fluid drag within 1.5 pounds remains. If the ball
were placed in a sphere (or portion of a sphere) the volume and weight of

fluid would be prohibitive because R is large.

One sclution is to place the ball on an arm, pivot the arm about the cc,
and provide damping on the arm rather than directly on the ball. An
arrangement of this type is shown in Figures 4-8 and 4-9. The pivot has
two orthogonal bearings (as in a Hooke's joint) with a dash pot about

each degree of freedom.
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T

As the ball pitches (or yaws) the pitch (or yaw) bellows expands
and contracts forcing the fluid back and forth through the orifice. The
amount of damping is controlled by the viscosity of the fluid and the size
of the orifice. The bellows design has no inherent sealing problems,

Finally, there is little question that the pivot-dashpot mechanism could
be built to weigh less than 1.5 pounds,

The pivot arrangement shown in Figures 4-8 and 4-9 does not permit the
damper ball to roll. The effect of rolling appears as the factor 7/5 in
the equations of motion. For the run shown in Figure 4-10, the effect of
the ball rolling was removed, A comparison between Figures 4~10 and 4-7

indicates some but not decisive changes in the damper performance,

4.2.3 TWO-TUBE DAMPER DESIGN

Damper Design 4, shown in Figure 4-11, has two orthogonally mounted ball-in-
tube dampers. Each tube contains a 2.1-inch diameter tungsten-carbide ball,
which weighs 2.65 pounds and a gas. The forward tube lies in the vz plane.
and the rearward tube lies in the Xz plane. The path radius R is 4 inches
and the mean value for D is 22.3 inches. For this design, k = 0.00622,

b2 =1.972, M = 5,575, &1, = 55 deg, € = 0, and Hi/e = 1.

The damper performance is illustrated in Figure 4-12. The g envelope is

reduced to 5.1 degrees by T = 62.5,

Two nonlinear fluid drag laws, which approximate the linear law used in
Run 47, are shown in Figure 4-13, The fluid is air in both nonlinear 1laws.
However, the gap ratios are different: ) = 0,036 and 0,05, ThH

__________ 5 A Y an N . ine

corresponding nonlinear damping coefficients are:

= - -6
0.0303, #BC = -9,7x10 for Xg

Ki/c = 0.114, ™ 0.036

1l

Mi/c = 0.0593, u,

0.05

0.0187,  Hgc = 2,55x107° for X,

The 6 envelopes obtained using the two nonlinear drag laws are almost

identical to the 6 envelope shown in Figure 4-12.

*The bellows arrangement was conceived by W. Bachle of Aeronutronic.
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SECTION 5
SMALL EARTH RE-ENTRY CONE

5.1 VEHICLE DESCRIPTION AND DYNAMICS

The dynamics of a small spinning Earth re-entry body with a pair of
orthogonal dampers is examined. The vehicle, which weighs about the
same as the Ames probe, is fictitious. It is a slender cone, 2.5 ft
long, with a half cone angle of 10 degrees and a base area of 0.61 ft?
The CP is located 1.72 ft aft of the cone apex and the OM is 0.15 ft
(or 6 percent of the cone length) forward of the CP. The vehicle mass
M is 1.14 slug, the pitch (and yaw) inertia I is 0.561 slug ft2 and
the roll inertia J is 0.0561 slug ft%

The reference area S is 0.61 ft2 and the reference length £ is 2.5 ft.
The axial force coefficie?t CA and the normal force coefficient C
based on Newtonian theory, are plotted in Figure 5-1. The moment
coefficient Cm’ about the CM, is -0.06 CN. The dashed line curves in

Figure 5-1 are given by

]

Ca

‘N

0.0605 + 0.518 sin 6 - 0.128 sin 26 + 0.092 sin 36 - 0.1006 sin 46

"

2.33 sin 8 + 0.1099 sin 26 - 0.15344 sin 46

which expressions were used in the computer runs.

WWhite, C. 0., "Generalized Representation of Cone Force Coefficients
by Newtonian Theory,'" EATN-1, Internal Aeronutronic Document ,
August 1963 .
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The atmospheric density profile is approximated by the exponential
function p = p*e“B where p, = 2.378 x 10.3 slug/ft3 and B-l =
22,000 ft. The entry conditions are v, = 22,000 ft/sec, Yo = 22 deg
and ho = 381,000 ft. The vehicle spins at 60 rpm and enters the atmos-
phere with GO = 40 degrees. The velocity v, the dynamic pressure ¢

and the angle of attack O are Plotted in Figure 5-2 as functions of

altitude for the above entry conditions.
5.2 DAMPER DESIGN AND PERFORMANCE
5.2.1 NOMINAL DESIGN

The nominal damper design has two orthogonal damper tubes each containing
a 1 pound tungsten-carbide ball and a gas. The ball diameter is

1.52 inches and the mean path radius R is 2 inches. This is not a

tuned damper. The angle limit aL is set at 39 degrees to reduce the
wobble amplitude when the balls are at the stops. The limits are
represented as inelastic. The vehicle damper-geometry is shown in
Figure 5-3. The rearward damper lies in the yz plane with its CC 10.8
inches aft of the CM, and the forward damper lies in the xz plane with
its CC 9.05 inches aft of the CM. TFor these specifications,

k = 0.001546, b2 = 0.84, kl = 5.4, Kz = 4,525, = 39 degrees,

and ¢ = 0.
5.2.2 DAMPER PERFORMANCE

The angle of attack profiles for the linear damping coefficient by =

2, 5, and 20 sec are illustrated in Figures 5-4a, b, and c, respec-

tively. The main differences in these plots are the @ trim angles;

1.98 degrees for by = 2 sechl, 0.84 degrees for by = 5 sec_1 and
0.38 degrees for by = 20 secnl. Examination of the corresponding
plots (Figures 5-5a, b, and ¢) for oy and 02 show that the balls

oscillate about and converge to the centers of their respective tubes.
This is the same behavior observed in the study of the blunt Ames

probe.
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FIGURE 5-2, VELOCITY, DYNAMIC PRESSURE, AND ANGLE OF ATTACK
PROFILES FOR THE NOMINAL ENTRY CONDITIONS (RUN 1)
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FIGURE 5-4a. NOMINAL DAMPER DESIGN WITH By =2 SEC™ (RUN 9)
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FIGURE 5-4b. NOMINAL DAMPER DESIGN WITH ,ul =5 SEC-l (RUN 10)
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FIGURE 5-4c. NOMINAL DAMPER DESIGN WITH ,Lél = 20 SEC_l (RUN 13)
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The spin rate w, is the z component of the total angular velocity W,
Using the nominal damper design, the spin rate decreases to a steady
value which depends on by This effect is shown in Figure 5-6. The
point at which the steady-state value for w, is reached corresponds
closely to the altitude at which 6 reaches its trim value. The
spin-reduction can be quite significant. A similar phenomena was
observed for the Ames probe but in that case w_ went from 30 to 28 RPM,

a relatively small change.

The precession rate ¢ is the rate at which the z axis cones about the
velocity vector v. For positive w, and a statically stable body ¢

is negative and decreases as dynamic pressure increases. The effect
of the damper is to drive @ to zero at approximately the same altitude
at which 8 reaches its trim value. This is shown by the precession

rate envelope plots in Figure 5-7.

We now have a clear picture of the steady state trim conditions; the
vehicle spins at a reduced rate without coning at a fixed value of 0.
The trim values and the altitude at which they are reached depend on

the damping coefficient.
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FIGURE 5-6. EFFECT OF DAMPING COEFFICIENT ON SPIN RATE
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SECTION 6

MODEL FOR THE VEHICLE-DAMPER DYNAMICS

6.1 INTRODUCTION

The mathematical model for the vehicle-damper dynamics is developed in this
section. The mechanization of the model for solution on a digital computer
is described in Section 7.

Because of the complexity of the forces of constraint between the damper
balls and the vehicle, the problem of deriving the equations of motion,
including the effects of spin and out-of-plane oscillations, is more than
routine. In a strictly Newtonian formulation each of the bodies is isolated
and all the forces acting on the body, including the constraint forces,

must be expressed explicitly. Thus, for the vehicle one would write Euler's
equations with external forces caused by aerodynamics and the damper balls.,
The forces caused by the damper balls are constraint forces and their correct
formulation is of such difficulty as to render the Newtonian approach
impractical.

In theory, the difficulties (of the Newtonian formulation) arising from the
forces of constraint are overcome by using Lagrange's equations. In the
Lagrangian formulation, the forces of constraint are automatically taken
into account by employing a set of generalized coordinates, a set of

dependent variables which are compatible with the forces of constraint and

6-1



yet completely define the motion of the system. A set of generalized
coordinates for the system would include three Cartesian coordinates for

the center of mass of the system, three Euler angles to orient the vehicle

and an angle to locate each damper mass with respect to the vehicle centerline.
The Lagrangian formulation would be ideal if it were not that the resulting
equations are overwhelmingly complex. This complexity can be traced to the

fact that the Euler angles are rotations about non-orthogonal axes.

The main difficulties of the Newtonian and Lagrangian formulations may be
circumvented by using what might be best described as a "quasi-Lagrangian"
formulation. The forces of constraint between the damper balls and the vehicle
arise from two sources; the angular motion of the vehicle about the mass
center and the acceleration of the mass center. Using a two-dimensional
Lagrangian formation (Section 6,3), in which one damper mass and the vehicle
oscillate in a fixed plane, rather simple expressions for the constraint

forces caused by acceleration of the mass center were deduced.

This fact is used in the development of the three dimensional model in
Section 6.4. Specifically, the forces of constraint caused by the acceler-
ation of the mass center are treated as applied forces similar to the aero-
dynamic forces. This allows use to describe the motion about the mass
center directly. To handle the forces of constraint caused by the angular
motlon of the vehicle about the mass center, we employ a Lagrangian-type
formulation but use body-fixed angular rates rather than the Euler angle
rates. The body-fixed angular rates are derivatives of quasi-variables, that
1s, they are not exact differentials. Their use is described by Whittaker”
However, we go beyond Whittaker's discussion in that true generalized
coordinates and quasi-variables are mixed in the formulation. The validity
of this approach is easy to establish. The resulting equations while

admittedly complex, are nevertheless manageable,

*
Whittaker, E. T., Analytical Dynamics, 4th Edition, Cambridge University
Press, 1937, pp 41-44,
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The model developed in Section 6.4 was used to obtain most of the results

in the study. It is based on the following assumptions:
(1) The vehicle has mass and aerodynamic symmetry.

(2) The aerodynamic coefficients vary only with angle

of attack, that is, they are independent of changes

in Mach number and Reynold's number.

(3) Aerodynamic damping caused by pitch and yaw rate

damping derivatives can be ignored.

(4) Aerodynamic damping caused by the lift force can

be ignored.

(5) Gravitational acceleration of the vehicle mass

center can be ignored.

(6) The radius of curvature of the target planet

surface is infinite.

(7) The damper masses are small compared to the

vehicle mass,

(8) The ball radius is small compared to the mean

path radius of the ball.
(9) The damper balls roll without slipping.

(10) Energy dissipation caused by rolling friction

can be ignored.

An extended model, in which assumptions (1), (3), and (4) are removed, is
developed in Section 6.5. This latter model was used to evaluate certain

special effects.
6.2 GEOMETRY AND FORCES
6.2.1 VEHICLE GEOMETRY

The vehicle geometry is shown in Figure 6-1. The x*y*z* axis system is

nonrotating with origin at the vehicle center of mass (CM). The z* axis
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FIGURE 6-1. VEHICLE GEOMETRY AND FORCES
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points in the direction of the vehicle velocity vector V. The Xyz axis
system also with origin at the CM is fixed to the vehicle with z along the
vehicle symmetry axis. The Euler angles ¢ about z*, § about the nodal
axis M and ¢ about z define the orientation of xyz relative to x*y¥z*,

The transformation equations are

/ x\ fcosy siny O cosg 0 -sing\ fcosd sind 0\ fx
y =1\ -sin¢ cosy O 0 1 0 -sing cosgp O y* [6-1)
z 0 0 1 sing 0 cos@ 0 0 1 z

Let k be a unit vector along v. The xyz components of k
kx = - cos ¥ sin 6, ky = siny sing, kz = cos @ (6-2)

are obtained from Equation (6-1). They correspond to direction cosines. The

angle 6 is the total angle of attack.
6.2.2 AERODYNAMIC FORCES

The aerodynamic forces are the only applied forces on the system. Let FA

N denote the

normal component force in the £ direction where € is orthogonal to 7) and z.

denote the axial component of force in the -z direction and F

The functional forms for FA and FN are

= = 6"3
F qSC F\ = d5Cy (6-3)

A
where q is the dynamic pressure, S is the vehicle reference area, CA is

the axial force coefficient and CN is the normal force coefficient. CA

and CN are functions of 8, and q is a function of time.
The normal force FN acts through the center of pressure (CP) which in
Figure 6-1 is shown forward of the CM., An equivalent force system is

obtained by shifting FN to the CM and introducing a torque
= 6-4
QQ qSECm ( )

about T where f is the vehicle reference length and Cm is the moment

coefficient. Q6 is equal to the product of FN and the distance between the
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CM and CP, which distance may be a function of 6. For the cases considered
in this report the CP is behind the CM in which case Cm is negative.

Resolving Qg along x and y body axes we obtain

9 -1/2
Qgk | 1-k,

2\-1/2 (6-3)
'Qekx(i-kz>

N

G
X

Il
[

Qes l'ﬂ'll/

G

y

Qecosw
6.2.3 DAMPER GEOMETRY

One damper is mounted in the yz plane and the other damper is mounted in
the xz plane (Figure 6-2). Both dampers are identical with the same ball
mass m and same ball path radius R. The subscripts 1 and 2 will refer

to the dampers in the yz and xz planes, respectively. The angles al and
az locate the two damper masses with respect to z, The center of curva-
tures (CC) for the tubes are located the distances D1 and D2 behind the

CM. Since the tubes cannot intersect on the z axis Dl and D2 cannot

strictly be equal, though the differences may be small. The coordinates

of the damper masses are

X, = o, Y1 -R31na1, z, Rcosa.l-D1

2 R81na2, Yy = 0 z, Rcosa.z-D2

(6-6)

X
1

i

Let rb be the ball radius and Gb be the relative angle of rotation of the
ball about its mass center with respect to z, The balls are assumed to
roll without slipping. When the ball rolls on the forward wall of the

tube the constraint equation is

"6y = (R + rb) a

and when the ball rolls on the back wall of the tube the constraint equation
is

Tpep = R =Ty @
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FIGURE 6-2. DAMPER GEOMETRY
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For T << R both constraint equations provide

2
.2 R .2
By, = <;b> a (6-7)

6.3 PLANAR MODEL
6.3.1 PLANAR GEOMETRY

Before considering the full-blown three-dimensional model, it is well to
treat a special case in which the vehicle and one of the damper masses move
in a single fixed plane. The geometry for the planar model is shown in
Figure 6-3. The X and Z axes with origin at 0 define an inertial frame, that
that is, 0 is unaccelerated and X and Z are nonrotating. The velocity ¥

of the CM is assumed to be constant in direction and in the Z direction.

By previous notation, Z is parallel to z*. The radius vector B locates

the CM with respect to 0 and the radius vector T locates the ball with

respect to the CM.
6.3.2 KINETIC ENERGY

The generalized coordinates for the system are px, Py 6@ and . Let M be
the mass of the vehicle, m be damper mass and I be the moment of inertia

of the vehicle about the CM. The kinetic energy of the vehicle is
S lyfe2 L2 Vo122 ]
Ta—zM(px +pz)+2 2] (6-8)

The kinetic energy of translation for the damper mass is
_l . . 2 . . 2
Tb—zm[(PX+rX) +(Pz+rz)]

r, = Rsin (QX+ 6) - Dsing
r, = Rcos (A+HO) - Dcos@

r, =R+ 6) cos (A+6) - D 6 cosp

r, = -R(a + 0) sin (a@ + 6) + D Osing
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the expression for Tb becomes

. . . 2
T = 1 m]p,+ R(&. + @)cos(a + ) - DBcosg
b 2 X (6-9)

+

N =

2
m [pz - R((Z + é)sin(a+9) + Désine]

In view of the constraint Equation (6-7), the kinetic energy of rotation

of the ball about its mass center is

2 r 2
2 2 .. o1 2 f . .._b.é
(E“‘rb )(9+9b) - 5™ (°"+ R )

Again invoking the condition r << R, the form for Tc reduces to

[ |
N

C

T =%mR & (6-10)

The total kinetic energy of the system is thus given by

= 1 52 .2 122 2.2
T-2M<px +pz)+2I9+ mR“q

=

-+

N

2
m [px + R(('I+ é)cos(a+6) - Décos@] (6-11)

[

2
m [pZ - R(d + @)sin(a +6) + Désine]

6.3.3 LAGRANGE'S EQUATIONS

Langrange's equations for the four generalized coordinates pX’

PZ, 6 and o are

(6-12)
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l

where

F

X - FA81n9 + FNcose

(6-13)
F

7 - FAcose - FNsiHQ

are the applied aerodynamic forces,
Qe = qsﬁcm (6-14)

is the aerodynamic torque about the CM, and Dy is the fluid drag on

the ball which we assume depends only on Q.

With the assumption that m« <M, the equations for Py and pZ can be
approximated by

MpX - FASIHQ + FNCOSG
(6-15)

MpZ = - FAcose - FNSUIQ

Lagrange's equations for 6 and @ are

10 + mR2 [(1-27xcose +X2) 6 + (l-\cosa) o+ A(26 + @ dsina,:]
(6-16)

= qu,Cm - mR{;o'X [cos(a,+ o) - Xc059]+ .P.Z [-sin(a,+e) +Xsin9]}

.. .o 2
rnR2 [ a + (l-Acosa) 6 - AD sina] + RD,,
. (6-17)
=-mR[PXcos(a.+9) - pzsin(a+9)

where A = D/R. Using Equation (6-15) to eliminate PX and :p'z,

Equations (6-16) and (6-17) become

16 + mR2 [(1-2Xcosa + XZ) 0 + (L-Acosq) & + A (26 + &)dsina]
(6-18)

.

m | '
= - mem i -A'
qSkc M R] F,sina + FN (cosa )

L . 2
mR2 [ a + (l-Acosa)d - A8 sina] + RDOL = - ﬁ- R(F

Asina,+FNcos a.) (6-19)
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2
e og2_ase 2 st e
I ° I ° 7MRY )
M= cosa-A, &= 1-Acosa

Equations (6-18) and (6-19) can be written as

6+ k [(1-2Xcosa +X2) 6 + La +a (2é+c3t)dsina]
(6-20)

_ 2 7 2o .

=Q Cm -3 kb (CA51na + C&ﬂ )

oo 5 e 2l 2 2f

a + = (Ce -6 Slna)'*' 20 = -bQ (CA51nOL+ CNcosa,) (6-21)

. 2 . . , .
In these equations, ()7 is a function of time determined by the motion of

the mass center, & is a function of o, and C C,, and Cm are functions

A TN
of the angle of attack 6.

6.3.4 CONSTRAINT FORCES CAUSED BY THE ACCELERATION OF THE CM

The terms

R (FAsina + FNT)) (6-22)

=13

Qe - -

=13

]
Qa’ = - R (FA31na + FNcosq) (6-23)

appearing on the right-hand sides of Equations (6-18) and (6-19),
respectively, can be identified as the forces (or more correctly the

torques) of constraint due to the acceleration of the CM.



In Figure 6-3, we show the inertial forces (m/M)FA in the z direction and
(rP/M)FN in the -x direction acting ?n the ball. One can easily identify
Qe as the torque about the CM and Qg as the torque about the CC caused by
the above inertial forces. This observation is used the development of

the three dimensional model in Section 6.4.
6.4 THREE DIMENSIONAL MODEL

6.4.1 THE QUASI-LAGRANGIAN FORMULAT ION

In the three dimensional model we formulate the motion about the CM and
treat the inertial forces caused by the acceleration of the CM as addi-
tional applied forces. The kinetic energy of the system about the CM is

of the form

, ocl, ocz, al, ocz) (6-24)

T = T (a)x, Wy W,

where wy, (Dy and W, are components of the vehicle angular velocity @,
the a; are the ball angles, and the @j are their derivatives. It is signi-

ficant that T does not depend on the orientation of the vehicle.

The equations of motion for Wy s LDy and O, are generated using the quasi-

Lagrangian equations

d or oT or  _ '
dt Jw W, w * (L)y oW B Gx M Gx

x y z
d oT T or _ 1
T - I - R M (6-25)
d  JT OT oT
dt ow_ -~ %y awx T Se. 70
where

5\"1/2 ,\1/2

G, = qszcmky(l-kz) , G, = -qszcmkx(l-kz) (6-26)
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are the body fixed components of the aerodyanmic torque Qg and

C .k i
- .D ( ; Ny -
G; = vRALE Cy sina; + 5 (coscx.1 Xl)
i 1-k> J
i (6-27)
i C. k )
R . _ N x _
Gy = v RgS CA sina, 2 (cosa,2 XZ)J
L z J

are the body fixed components of the constraint torque Qé given by
Equation (6-22).

The above torque components depend on the instantaneous values of the
direction cosines Ky ky and k, between the xyz axes and the velocity
vector V. Since the direction of V is assumed fixed, the direction cosines

satisfy Poisson's equations

k 0 -0 o k
X z X
%y + w, 0 w0 ky = 0 (6-28)
k -w w0 k
z Yy X z
The equations for the two damper masses are obtained from
d oT oT ' .
-— 2 - = - RD + Q i=1,2 (6-29)
4t day oa, % %
where the Dg; are the fluid damping forces and
N Ck \
1 - - = : )
Qa‘1 M RqgS CA 81nCl.l + 5 COS('X,1
1-k
z
) (6-30)
! m Cka
sz = -=RqgS{C sina.2 " cosa,
M A 1/ 2
l-kz ]

are the constraint torques corresponding to Equation (6-23),
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6.4.2 KINETIC ENERGY

The kinetic energy of the vehicle about the CM is
1 2 2 1 2
Ta = 3 I (a)x + (Dy) + > J CDZ (6-31)

where I is the moment of inertia about x and y and J is the moment of

inertia about z., Later n will be usecd to denote the inertia ratio J/I.

The kinetic energy of translation of the two balls is

2
1 E m U2 + U2 + U2
b 2 X, y. z,
. i i i

i=1

U 0 0] - W
Xl z y
U}’l - Y1 + a)z 0 " Y1
Uz, 1 -O‘)y wx 0 Z1
1
Ux X2 0 -wz <J‘)y X2
2
U = 0] + w 0 -w
y z X
2
Uz Z2 _wy (Dx 0 2

Introducing these velocity components into T, we obtain

|
il

o

N

o

N

_ 1 2 2 2 2 2 2 2
Tb -Zml[o‘)x (yl+zl)+wyzl+wzy1 2('DZO‘)yylzl

s o : 2 a2
o (v oz -z ) vy 1
(6-32)
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Using the transformation equations

yi = - R'sina.l z, R (cosa1 - Kl)
x2 = R sina2 z, R (cosa.2 - XQ)

where Xi = D,/R, Equation (6-32) becomes

mRz{wi [szm1 + (cosa, - )\1)2 + (cosa, -x)'z]

=)
[}
N =

2 2
+ (J.)i[sinzcx.2 + (cosaé - XZ) + (cosa1 -)) ]
(

+ (bi simzcx.l + sinza.z) + 2(1),z (Dy sinc(1 (coscx.1 - Xl)
(6-33)
- 20 W sin cos - A + &? + &2
) Py 81nd, ( a = X) 17 %

+ 2&& al (1 - Xl cosal) + 20§'a2 (1 - X cosaQ)
The kinetic energy of rotation of the two balls is
1 22 2 )
Tc =5 mR (al + az) ' (6-34)

where we again assume that the ball radius is small compared to the tube

radius of curvature.

The total kinetic energy about the CM is given by
T = Ta + Tb + TC (6-35)
6.4.3 EXPLICIT FORMS OF THE EQUATIONS OF MOTION

In forming the equations of motion it is expedient to introduce

M, = cosa; - Ai Ci = 1 - Xi cosa., i =1,2
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To obtain the explicit forms for Equations (6-25) and (6-29) we first form

OT 2 2 2 2) .
- - a
&Tx Tw, + mR w, [sin a1+n1+n2 w, M, sina, + 1§1
oT = TW +mR2[ sin2 +772+7]2)+ i +(:!. ]
&g y wy 0'2 2 1 wz nl s 1w‘l 2(‘2
oT = Jw + mRz[a) sinza + sinza )+ si - i
ﬁ; z z 1 2 wy 7]1 na WMy 8 n,
d ar : 21 - ( . 2 2 2) :
e ﬁx = I (DX + mR [wx sin al + T)l + n2 - cnz n2 sino.2
+ wa(al sim‘.x.l costx1 - al T]l sina.1 - a2 7}'2 sina.z)
o a sinza, - & cosa, + .o; .+ ) c-x2 i
2z %2 ) T W, AT 2 1217 % siny
dy 2[- 2 2 2) . .
dtﬁy = I(Dy+mR wy(sm oc2+"f)2+'f11 + wz nl s.mar.l
+ 2w (a sma cosa, (:x.2 T) sincx.2 - al T)1 sina,l)
“w o '2a+ a cosa. +at‘,+ dzs‘n
g % Sin @ + a7 cosa 25y T N &, sina,
dor 2| - ( 2 )
it &‘_Dz- = J(L)Z + mR [wz sin a'l + sin a. + a) T] sma.1 (D T] s:.ncx,2

+ 2(1)z (G.l sina.1 c:osa.l + d'Z sina.‘Z cosa.z)

. ] 2 . . 2 . .
- (Dy al sin onl + a)y alnl c:oscx.l + a)x a'2 sin a'2 wxazﬂz cosaz]
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3, 5

%‘2 - o™ (wy 52%5 2)

fzg’% = mR? (% “1+cl>x 6, + o dl sinocl)
g? gg; = mR2 (% o , t d& Cz + Xz a& d2 sinaQ}

_ 2 2 . 2 .
Baz = mR [UJZ suxa1 cosa1 +(L)_X cosa,l . ﬂl )31na1

—wzﬂ sina - sin’a, - @ 7 so. ) + A w o si
y & ZFQY n oy v co 1) 1 P X 31na1]

oL _ 2 2 . 2
Sa mR [UAZ SJ_na,2 cosa2 + Q§

cosa2 - ﬂz) s1n0(.2
2

2 , . 2 . : .
-u§ ﬂz sina, + ag PDX sin aQ a&ﬂz cosaz) + XQ wy az 51na2]

When the above expressions along with the torque defined in Equations (6-26),
(6-27) and (6-30) are introduced into Equations (6-25) and (6-26) we obtain

the following set of equations.

6-18



1

(6€£-9)

(8€-9)

v_Uuls
4

(1€-9)

£
ﬁﬁdcﬂm "W - Sours yf’m - w&-rﬁmc.- Mc - %y uts

(9¢-9)

A ’ 2 A £ 4
_Hmd_:.m 4w o - lours HCAM - i + ANC - MC - ﬁoJEL w’m + Dours Ip Hx + ﬂuwu + osoo Yy “oz-

|

4

0_Uuls
14

z ﬁomou H..(p - Hd urs

v

[4

£
8x8 + mcﬁm NCR

Losoo mnmnrl + bours Yp U - oz - =
10
£ z 1 A% X f 1 L ﬁN £ u 1 X / 1
mm 0urs m+ M - "0s0D utrs m - M|+ - +
MR PR B ST A RPN
£
0 = : NdmoU mdcﬂm Nd + Hdmou ﬁo:ﬂm Hd N8N + NchHm NdeN + Hdwcﬂm fo mg -
z X 1 1 [x =z L 4 1 z u z
m - m] - ours c.ﬁ m m+ i + A ,omﬁm + dmﬁmv 8“_ gt @

[4 ¢ [z
[4

1 [4

A
m

£
L - “outls N@NL me +

. , : s
‘ours Lo - Tours T ﬁ,\v "oz + “ours 9o - ﬁ: + Mc + ci x@T + ‘wotu-g) - To

z
A-1

z Z
Aq-1 A-1

NC Il\/tM|Z| - Ngocﬂm <U Nnxm - Nll.\/zn 5=
o

= o
T 0
\O
¢ . x3m8| N‘écﬂm MCNK + NUN@ + HdwOu HCHB N8N +
1 1 2 1 Z Z A X Z A
0uts C8+HN:+NC+ dmﬁmw 8wx+ ow'm (u-1)+ ®
“A-1 “q-1
L wuﬂl\f + lours Yy Nnxm - m'elPNG =
10 10

¢ [

[4

X

[4




- 5 - 2 2 . 2 2)
a = - _ .
5 + 7 [A§c2 + (a& a%) 31na2 c:oso(,2 XZ(“% + a@ SLnO(,2

. 2
- a%u%((SLn az - ﬂz cosaz)]

_ 2 2 . X
= - 262 - b (EA 51no(,2 - 5 cosQ

2 (6-40)
6.4.4 MOTION OF THE CM

The function Q2 is a function of time depending on the dynamic pressure q
by the equation

2
Q° = qSi/1 (6-41)
where S is the vehicle reference area and § is the vehicle reference length.

Dynamic pressure is defined by
1 2
q = Fpv (6-42)

where © is the atmospheric density and v is the vehicle speed. We assume
that 0 is an exponential function of altitude h. Thed if pP* denotes the
density at some reference altitude h* (note: h* may or may not be zZero)

and if B denotes the reciprocal of the atmospheric scale height, pis

given by

p = pre B (70 (6-43)
The drag on the vehicle can be expressed as

Fp = a8 [C, cosg+ C sine) (6-44)
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With k, = cosf, the acceleration v becomes
; = I8 W/_Z }
v v (EAkz + CN 1 kz ) (6-45)

The change in h is given by

h = -v sin?Yy (6-46)
where Y is the angle between the velocity vector and the local horizontal

(positive down). Equations (6-45) and (6-46) presuppose that the gravity

acceleration is zero and that Y is a constant.

In certain cases, only the motion above the point of peak dynamic pressure

is of interest. Above peak q, the speed v is nearly constant. If v is

indeed treated as a constant, QF can be represented as a simple exponential

function of time. Specifically we have

e? - et (6-47)
where QO is the value of  at t = 0 and ¢ is a constant defined by

¢ = fBv sinY (6-48)

with dimensions of (time)-l

6.5 MODEL EXTENSIONS

6.5.1 DAMPING CAUSED BY LIFT

To this point, the direction of V has been assumed fixed. Now we remove
this restriction and include the effects of directional changes in v caused
by lift. For a statically stable vehicle with a positive lift coeffi-
cient, the effect is to damp the oscillations; while for a statically

stable vehicle with a negative lift coefficient, the effect is desta-

bilizing.
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Directional changes in v are reflected by the differential equations for the
unit vector k along V. With k fixed the righthand side of Equation (6-28)

is correctly zero. When the lift force

FL = ¢S CN cosg - CA sine) (6-49)

is included, Equation (6-28) must be replaced by

kx 0 W, a)y kx . kx

. L

ky + w, © “® ky = " Mvsin 6 ky (6-50)
kz -a)y U)X 0 kZ kz

6.5.2 AERODYNAMIC PITCH AND YAW RATE DERIVATIVES

The applied aerodynamic torque components caused by the vehicle pitch and

yaw rates are given by

4 - £ -
G, qS 4 Cmq(Zv)wx , Gy = qS4 Cmq(2v>wy (6-51)

where Cmq 1s the rate damping coefficient. To include the effects of these

terms it is necessary to add

2 ) 2 )
B 7o)

to the righthand sides of Equations (6-36) and (6-37), respectively.

For a nonspinning body, the effects of the 1lift force and the above rate

damping terms are qualitatively the same. This is not the case when the

body spins.
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6.5.3 VEHICLE ASYMMETRIES

In developing the equations of motion we assumed that the vehicle has mass

and acrodynamic symmetry. Certain asvmmetries are now included in the

model.

To handle the case when the moments of inertia I1 about x and I2 about y

are unequal, the following changes must be made:

(1) Detine

1 11 ’ 2 I, > 3 J
. 51 , 51 ,

b/_ - - ]_ , bA _ 2 ; Q/_ - gs,g , Qz — gSﬂ
1 MR Y 2 7MRY 1 11 2 12

(2) In Equation (6-36), replace 1 - n by (I, - J)/I],

2 2
92 by Ql’ b2 by by and k by k

1 1

(3) In Equation (6-37), replace 1 - n by I, - J)/IZ,

9
9% by @2, b? by b- and k by k

2 2°

(43} TIn Equation (6-38), replace k by k3 and add
- ne left- ide.
(12 Il)/J‘DXCDy to the left-hand side

(5) 1In Equation (6-39). replace b2 by b

N = o
S

[

(6) In Equation (6-40), replace b2 QZ by b

o)

2

N

Next, consider the case when the CM is displaced a distance A in the -x
direction from the geometric centerline. The first order effects of A can be

examined by adding

i 2 ’
O |a 1 - 7
2 (do * k, Ka) )/

to the right-hand side of Equation (6-38).
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Last, we include moments caused by nonzero trim about the x and y axis.
Somewhat unconventionally we define Cm, as the trim moment coefficient about
x and Cno as the trim moment about y. These effects are treated by adding

Qi Cmo to the right-hand side of Equation (6-36) and Qg Cno to the right-hand
side of Equation (6-37).
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SECTION 7

DIGITAL COMPUTER PROGRAMS

7.1 THREE DIMENSIONAL PROGRAM
7.1.1 PROGRAM MODEL

The three dimensional computer program, which is documented in this sec-
tion, was used to obtain the results for the Ames probe in Section 3 and

the small Earth re-entry cone in Section 5.

The basic equations for the three dimensional model were derived in
Paragraph 6.4. Because the derivatives are coupled, Equations (6-36)
through (6-40) are not suitable for numerical integration. The equations
which were actually programmed for numerical solution are listed in

Table 7.1. They are only partially coupled. The procedure for evaluating
the derivatives (the crux of the problem when there is any coupling) is

as follows:

(1) Solve Equations (7-1) and (7-2) for d& and d&

with o = 0.
z

(2) Solve Equation (7-3) for d& using above values

ofd) andd) .
X y
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volue of w .
Z

Re-cevaluate & s

~
(S}
g

Solve Eauation= (/-4 and (7-3) fov . aad py

-~
i~
~’

using the new valu

ted by the trun-

.

[
o
9]
o
@

asrodviamic cuel

cated trigonometric so

4

‘ .
Ly = ag + L
p=1

(7-27)

4
Cog = ‘__45 N, sin pe

AN H
p=i
Uw = sin pe (7-29)
wiiere the ap, o, and m o are welected fo obtain best fit curves to the
I f
he formulas

actual data. The program computes G, Cy, and Gy by t

Ca = a, + V1 - kI x4 (7-30)

(7-31)

CN = \(1 - kZ KH
(7-32)

~ _ 2 -
Cpy = 1 - l"z Ko

and K, are giver by Equations (7-21), (7-22), and (7-23),

where K., K,

respectively,

The fluid drag DQ is approximated by the cubic equation

i

_ - SV R Vo > 3

Dr‘,(‘ = (,lha,l_ + CZY\ Q’l ‘LL'I + L}J\ Gl (7-33)
i
The computer program uses Equation (7-20) where
5Cy 5CHR

L, = Ty ~" = - [EN
PL Tm > M2 tam > 73
ine arctiflicial parameters
{(7-3), should be set equal to

(1) The damper in the vz plane is removed

(set Ey = 0, Lo = 1.

(2)
{3) Poth Jdampers are removed (set El = EZ = 0).

N
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Condition (3) is optional since the ki can also be set to 0. However, the

integration proceeds faster when E1 and E, are zero.

2

The artificial parameter Ess which appears in Equations (7-6) and (7-7),
is either 1 or 0. With E3 = 1, the changes in the velocity direction
caused by lift are included, while with E3 = 0 these changes are not in-

cluded. All the runs in this report have E3 = 0.

7.1.2 FLOW DTIAGRAMS
PEND 3D (Figure 7-1) is the main routine performing the reading of the
input data, the initialization, and the call of the Runge-Kutta integra-

tion subroutine.

Data are read according to Figure 7-2. This method permits the processing
of several cases by only inputing changed quantities. It is accomplished
through the assignment of a card number (KARD) and a field number (IELD)

to each variable,.

Integration is performed in a variable interval mode. Every integration
step is performed in two half-steps using conventional Runge-Kutta to
obtain the midpoint values of the derivative. The derivatives at the
initial and end points are used to form a Simpson's Rule evaluation for
the full step. The magnitude of the difference between Runge-Kutta inte-
gration over the two half-steps and the Simpson's Rule integration over
the full step is taken as an indication of the error. This magnitude is

computed by the following ratio

d.

€. = —1

' ag T vy
where
di = the difference between the two integrations,
a, = absolute error factor,
r, = relative error factor,
y; = value computed by Runge-Kutta
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The maximum, m, of € is determined. {f m >1, dt is divided by
{yfa'dnd integration is repeated using the reduced dt until the error
term is acceptable. If 0.75 < m < I, dt is divided by {VTE_. When
0.075 <4 m < 0.75, dt is unchanged. For m < 0.075, dt is multiplied by

The intégration routine begins with & single entry to DERIV, immediately
followed by an entry to CNIRL to ailow printing of initial values of the
system. DERIV (Figure 7-3) is entered eight times for cach full integration
step. It computes the value of the derivatives. If MEGOPT is equal to
2.0, the derivatives of velocity and altitude are computed; MEGOPT equal
to 1.0 causes the omission of this computation. The derivative of ¢ is

computed when IOPT is equal to 1.0.

The CNTRL subroutine (Figure 7-4) computes auxiliary equations and prints
results. The angles oy and az are restricted to a user-set limit in this
routine. If either exceeds the limit, a new dt is computed and the inte-
gration step is repeated. The next entrance to CNTRL sets the angles

equal to aM, a value slightly velow the limit. P1 and P2 are multiplied

by €, thus changing the slope of the angles, and the integration is

restarted.

7.1.3 INPUT DATA AND FORMAT

All cards are given a card number which must be entered in Columns 1 and 2.
Each variable is given a field number specified in Column 3. The field
number is left blank in the first case and at all other times when the

program is to read all data on that card. Thus, the input format is as

follows:
(Columns
1 and 2) (Column 3)
Card No. Field Columns Program Name Description
1-72 Title Identification
01 1 4-13 XJ J
2 14-23 XIl I
3 24-33 X1?2 Io
4 34-43 S S
5 44-53 XM M
6 54-63 XL [}
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Columns

1 and 2) (Column 3)
Card No. Field Columns Program Name DescriEtion
02 1 4-13 AO a
2 14-23 Al a]
3 24-33 A2 a
4 34-43 A3 a3
5 44-53 AL ay
6 54-63 DELTA JAY
03 1 4-13 XN1 n
2 14-23 XN2 ny
3 24-33 XN3 nj
4 34-43 XN4 ny
04 1 4-13 XM1 m]
2 14-23 XM2 my
3 24-33 XM3 m3
4 34-43 XM4 my,
5 44-53 cMQ Cm
6 54-63 QMo Cr
7 64-73 CNO Cag
05 1 4-13 C C
2 14-23 GAMMA v
3 24-33 BETA B
4 34-43 RHOS p*
5 44-53 Hs h*
6 54-63 OMEG10 Q%O
7 64-73 OMEG20 Q%
[0
06 1 4-13 XLAMB1 A
2 14-23 XLAMB2 Ao
3 24-33 BSQL b}
4 34-43 BSQ2 b3
5 44-53 ALPHAL g,
6 54-63 ALPHAM an
7 64-73 E €
07 1 4-13 XMU1 Ky
2 14-23 XMU2 Ky
3 24-33 XMU3 I
4 34-43 XK1 k]
5 44-53 XK 2 ko
6 54-63 XK3 k3
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Columns

1 and 2) (Column 3)
Card No. Field Columns Program Name Description

08 1 WXO W,
2 WYO CDy
3 WZ0 wy,
4 XKX Ky
5 XKYO Ky
6 XKZ0O k.,
7 PHIO ®

09 1 b3 PiO Py
2 1023 P20 P,
3 24-33 ALP10 af
4 =43 ALP20 )
5 i4-53 HO h
6 Sh-63 VO v

10 1 513 TO ts
2 14-23 TF tf
3 24-23 EA absolute

error
4 34-43 ER relative
error

5 +4-53 DT dt

i1 1 4-13 MEGOPT omega option
2 14-23 IOPT phi option
3 24-33 TPRINT print option
4 34-43 TPUN punch option
5 44-53 CAPE1 Eq
& 54-63 CAPE?2 Ej
7 94-73 CAPE3 E3

The last card for each case must consist of asterisks in Columns 1 and 2.

The input format allows for the stacking of cases, that is, the first
case must contain all input data. 1If only a few quantities are to be
changed in the next case, it is necessary to specify only those values.

This is done with a change of variable card whose format is as follows:

Coiumns Description

1 and 2 Card number from which the variable is read
3 Field number of the variable

4 - 13 New value of the variable
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COMPUTE
dw
-3

START

ISTEP = ISTEP +1
COMPUTE:

S1s 6, K|

K, K
a n

-1 2 m
2

COMPUTE:

2
q, 8,0 2
1 2
dv, dh

——7 7
COMPUTE: (2 /Q2

|

YES
N IF ISTEP=1

COMPUTE

dw =dw +TERM
X X

dw =d(,0y+TERM

S

V4
dp,,dp,,di,dk ,dk,

dldoc2
1@
0

RETURN END

FIGURE 7-3. DERIV
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V(5) = -ExY(5)
Y (10) = SIGN

(0l > Y (10))
NTRY = &
IFLAG = Q
INBEX = 0

AMS = SICN
(OLM,Y(IO)')
CALC DT2
IFLAG = 1
INBEX = 1

DT = AMIN1
(DT1,DT2)
NTRY = 3

SRR A nE T
LAANL Aano .,
VALUR OF
ay fa,

RETURN

YES

Y () Y (4)
Y(9) = SIGN
(&, Y(9))
NIRY = 4
IFLAG = O

AMS = SIGN
\G,M,Y(l)))
CALC DT1
NTRY = 3
IFLAG = 1
INDEX = 1

l

O,
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XMODF
(INTEG,
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COMPUTE:
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0, W /75

. 28

CHANGE
UNITS
RAD —=DEG

s Z

WRITE
OUTPUT

FIGURE 7-4.
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YES

PUNCH
OUTPUT

CNTRL (Continued)
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When a field number is specified, as above, the program will change the
variable according to the card and field numbers. As many variables as
desired per case may be changed; however, each change requires a change of
variable card. When using change of variable cards, a title card and a

double asterisk card are still necessary.

The variable IPRINT controls the number of integration steps between each
printout. It is recommended, because of a variable interval mode, that
results be printed at each step, that is, TPRINT should be set equal to
I.0. The following absolute and relative error controls proved to be the
most successful in dictating interval control:

0.0001
0.001

EA
ER

IPUN controls the punching of output data. When IPUN is equal to 0.0,

data will not be punched.

The desk '"set-up'" is shown in Figure 7-3.

7.1.4 OUTPUT
The output will include all input data.

are also output:

t T/TO q h 6 w, o a,

Figure 7-6 is a sample of the print-out.

7-14
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r’END DATA
_ END DATA (COLUMNS 1-8)

i DATA DECK

GO (COLUMNS 17-18)

PROGRAM DECK
LOAD (COLUMNS 17-20)

FO3465 U

FIGURE 7-5 DECK SET-UP
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7.2 PLANAR PROGRAM
7.2.1 PROGRAM MODEL

The planar computer program was used to obtain the results for the spher-

ical entry body in Section 2 and for the Goddard probe in Section 4.

The equations for the planar model were derived in Paragraph 6.3. The
equations which were actually programmed are listed in Table 7.2. Two
comments are appropriate. First, the model is based on constant linear
velocity. Second, a cosine term has been added to the series expansion

for CA'
7.2.2 FLOW DIAGRAMS

PEND (Figure 7-7) is the main routine performing the reading of the input
data, the initilization, and the call of the Runge-Kutta integration sub-

routine, This integration routine was discussed in Paragraph 7.1.2.

The subroutine DERIV is called by the integration routine to compute the

values of the derivatives.

The computation of auxiliary equations and printing of results is done in
subroutine CNTRL (Figure 7-8). This routine also restricts the angle «.
Upon entrance to CNTRL, Q& is compared to & s the user-set limit. When

a>a a new dt is computed and the integration step is repeated. The

L’

next entrance to CNTRL sets o equal toa, , a value slightly below the limit.
L

The slope of the angle, Py, » is multiplied by € and the integration is

reinitiated.
7.2.3 INPUT DATA AND FORMAT

Each case consists of eight cards. They have the following format:

Card Columns Program Name Description
1 1-72 TITLE Identification
79-80 Card order, for

convenience in
deck set-up
only.

7=-17



Columns Program Name Description

1-12 XK k

13-24 XLAMB S

25-36 BSQ b2

37-48 OMEGAO 0f

49-60 C C

79-80 Card order
1'12 AO aO

13-24 Al a;

25-36 A2 a,

37-48 A3 as

49-60 A4 ay,

61-72 SAS5 as

79-80 Card order
1-12 XN1 ny

13-24 XN2 n,

25-36 XN3 ng

37-48 XN4 ny

79-80 Card order
1-12 XM1 my

13-24 XM2 mo

25-36 XM3 ms

37-48 M4 my,

79-80 Card order
1-12 XMU1L “1

13-24 MU2 Mo

25-36 XMU3 H3

37-48 ALPHAL ar,

49-60 ALPHAM aM

61-72 E €

79-80 Card order
1-12 PTO py initial
13-24 PAO Py, initial
25-36 THETAO 6 1initial
37-48 ALPHAO o initial
79-80 Card order
1-12 TO t 1initial
13-24 TF t final
25-36 EA Absolute error
37-48 ER Relative error
49-60 DT dt

61-62 IPUN Punch option
63-64 IPRINT Print option
79-80 Card order
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—

START

READ AND
WRITE
INPUT DATA

INITIALIZE
FOR
RKS 3

:

CALL
RKS 3

v

WRITE
BAD
INTEGRATION

|

WRITE <
END CASE
END
FIGURE 7-7.
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START

CHANGE
UNITS FOR
PRINT-OUT

PREVIOUS
o> o,

RESTART
INTEGRATION

RETURN

PRINT RESULTS
ON 1ST ENTRY

7-21

® D ENTRY
MODULO IPRINT
COMPUTE,
REDUCED DT
FLAG = 1 NO
REPFAT
INTEGRA TION
STEP
YES
PUNCH
RESULTS
NO
YES
NTRY = 2
F03467 U
FIGURE 7-8. CNTRL




7.2.4 OUTPUT

The output will include all input data. The following calculated

quantities are also output:
8 o
t T/To Py

Figure 7-9 is a sample of the print-out.
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RUN 47

PENDULUM LCAMPER -

K = 2.00522

LAMBDA = 5.57500

B-SQUARFD = 1.9720¢C

OMEGA SQ. INIT, = 0.25000

c = 1.0200C

AC = -0.31840

Al = 0.45400

A2 = J.104CN

A3 = ~-2.08600

A4 = -0.33C00 A5 = J.44220

N1l = 3.75000

N2 = 0.05300

N3 = =-2.530.0

N4 = Ce

Ml = -1.83000

M2 = 0.23950

M3 = 2.09200

MG = .

MU1 = i.07Cc0on

My2 = Se

MU3 = D

ALPHA t = 55.CC0000

ALPHA M = £4.95000

EPSILCN = 2.

P THETA [iITIAL = .

P ALPHA [NITIAL = Ca

THETA = 155.0003¢C

ALPHA = D

T INITLAL = Oe

T FINAL = 10.20002

ABSOLUTE tRROR = UelOC10

RELATIVE £RRUR = 0.00100

D1 = Ce12000

PUNCH OPTION IS © - PRINT EVERY 1
T TAU/TAUD THETA

C. C. 102004001 0,1550C+003

C.10000+0LC C.1C513+4071 0.15494+003

Celd5849+y07
0.50968+(00
Ca90779+030
C.12932+(01
0.16785+u21
0.18320+{01
2.19854+.01
C.21348+.01
0.22322+401
Ca24457+UN1
Ce25991+{01
0.27525+401
0e29259+001
030027+ 21
0.30995+001
0.32530+301

FIGURE 7-9.

C.11380+40 31
0.12903+0C1
0.15744+091
0.19020+4001
C.231474401
0.24992+4001
0.269854+701
C.29137+4001
C.31460+001
£.33968+001
0.36676+001
0.39600+4091
T.427584+091
C.44878+4001
0.471C04+001
0.50859+001

Gel56584003
N0.15326+003
Delébd6+023
N0.13909+003
J.121614502
0.11109+003
0.97637+002
C.BOB4L 4002
D.£2659+05,2
0.37622+002
0.128234+20¢

-0.123874002

-2.364224C0,2

~0.499544302

~0.614254.02

-0.73179+502
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ALPHA
e
-02.32433+4000
=7.227094001
-2.77312+4001
~J.248504002
~2.543C0+002
-J.54900+4002
~0.548¢0+002
~2.54500+4002
-7.549C0+002
-J0.549C00+0C2
-D%.54900+002
-2.54300+002
~2.54900+002
-2.54900+4002
~J.549C2+002
-0.53638+202
-0.32574+40C2

GODDARD PKROBE

P-ALPHA

Q.
-0.63782+C01
~C.15529+C02
~-0.29685+002
=C.58c32+4C02

C.

0.

0.

C.

0.

C.

O.
-0

0.

O.

0.

0377444002

0.28931+003

SAMPLE PRINT-OUT FOR PLANAR MODEL



SECTION 8

INTERNAL DAMPER DYNAMICS

In order to understand the importance of the several parameters which
affect the drag of the sphere-in-tube passive damper, a simple flow
model has been developed. The drag values calculated from this model

are roughly the same as the results of the experimental program.

8.1 FLOW MODEL
The important non-dimensional parameters which relate to the drag are the
drag coefficient CD’ the Mach number M, the Reynolds number Rd’ and a

parameter . which depends on the geometry of the sphere and tube. These

are defined as follows:

Rd=%d
= fluid density
U = sphere velocity with respect to the tube
= sphere diameter
H o = fluid viscosity
2D
CD DUZA
D = drag

8-1




A = sphere cross sectional area = ——
&4
= t/d
t = tube inside diameter minus ball diameter

M = V/A (Mach number)

a = gpeed of sound

and the appropriate V will be defined below in such a way that M will not
be a significant parameter as long as M is much less than one. For most
cases ol Interest, M will always be sufficiently small that the tlow may
be considered to be incompressible. The assumption of incompressibility

will be used throughout the following analysis.

If the [low in the gap between the sphere and the tube is assumed to have
a uniform velocity, this velocity, when measured with respect to the sphere

center, can be shown to have the magnitude

. 1 .
V=101 + L (8-1)

by appeal to the equation of mass conservation. This V is typical of the

speeds in the gap, and is used in the definition of M.

The flow through this gap may be characterized by the Reynolds number R,
-
defined as

R =~ (-—Lj (8-2)

which is simply related to R

R = (=——=jR (8-3)

Whenever Rd or Rt is sufficiently small, the flow through the gap will be

viscous, and it may be compared to the channel flow problem discussed by
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Schlichting*. Schlichting calculates the inlet channel length required for

fully-developed channel flow. From this calculation, it was decided to

classify the flow past the sphere as '"wviscous'" or fully-developed channel

flow whenever
~L
R < 501 * (8-4)

and "inviscid" whenever

[N

R_> 500\ (8-5)

The drag relation in the inviscid region has been estimated by assuming that

C. is given by the relation

D
_ e U2
Ch =Cy (P (8-6)
. . . S
inviscid
where CD = CD (Rd) is the experimental sphere drag curve given by
S S

Schlichting.

For the region between the viscous and the inviscid limits, CD has been

obtained by fairing a smooth curve between the limits. This is analogous

to the smooth CD curve for the sphere alone, as given by Schlichting.
S

For the viscous case, the CD estimate is more complex. The flow through

the gap produces a difference in pressure between the front side and the

back side of the sphere. The drag associated with this pressure drop was

taken to be just the pressure drop times the sphere cross section area A.

In addition, the viscous wall shearing stress acts as a drag on the ball.

To estimate this pressure drop and shear stress, a parabola was fitted to

match the sphere curvature. The parabola was used to define a two-

dimensional channel, with the parabola as one side of the channel, and

*Schlichting, H., Boundary Layer Theory, McGraw-Hill, 1955, pp. 16 and 146.
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a straight line representing the tube as the other side of the channel.
The channel length was taken to be the ball diameter d. The parabola was
placed so that the channel entrance and exit both had the width (t + d/4);
halfway between the channel entrance and exit the width was only t, which
represents the gap between the sphere and the tube. Then, with a given
value of pressure drop through the channel, the flow rate was computed

wit

with the assum

h mp

ion that the pressure gradient dp/dx in the flow divection
and the velocity profile across the channel were both the same as in a

fully-developed, constant section channel.

The above calculation represents only the portion of the flow between the
tube and the sphere where the gap distance is equal to t. At the
diametrically opposite side of the sphere, the gap is zero since the

sphere touches the tube. The gap varies from zero to t as one travels
around the sphere. A calculation similar to that described above was

done for each position around the sphere and for some given pressure dif-
ference between the front and back of the sphere. Thus, (he assumption

vi & two-dimensional channel flow must be only a rather rough approximation.
The flow around each part of the sphere was integrated to give the total
volume flow rate, which by continuity is equal to the gsphere cross-section
area times the sphere speed U. The resuliting drag formula, with sowe slight

computational approximations, is

e 2. .
2 ME 2273 ()
e o= 2+ 3+ = vo) + 2200 (8-7)
D 3 200 3
viscous d
where
2
e ! -1 1 -
() = 4 —2 5+ i1/4\+62tan )
(» + I/A)h ’ 20 °
_ -3 1 -1
V0D =m0
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A 3 -1 1
E?X—I_T727 + X% tan (2)

6(V) = )

%

Results from equations (8-6) and (8-7) are plotted in Figure 8-1. This
shows the wide range of CD as A is varied. In particular, for the viscous

case and for 2<<1, CD varies like X-S/z.

8.2 RELATING CD - Rd CURVE TO DRAG AND VELOCITY

Figure 8-1 is a generalized curve containing a wide range of cases. Some
of these cases have been tested by the experimental program. As the
experiments were completed, the approximate results of Figure 8-1 were

replaced by the experimental data.

In any case, the transformation from the CD - Rd plane to a drag versus

velocity plot is straightforward. From the definitions of CD and Rd we

can write the relations

R u
d
U = T (8-8)
and
2
D = 1/20ACnU (8-9)
2

Thus, U is a linear function of Rd’ and D is a linear function of CDU .

8.3 HEATING PARAMETER

The passive damper action generates heat. Whether or not this is a problem

can be answered by defining a heating parameter 0 as

_ energy expended by the sphere drag
"~ fluid heat energy per degree temperature rise

where the fluid heat energy is that contained in the tube volume swept

out by the motion of the sphere. That is,
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9 = DU (8-10)

m,2 2
—d
% (1 + ) Uogcp

or

CDU2
g = (8-11)

2(1 + X)Zng

where most symbols are defined above, g is the acceleration of gravity,

and Cp is the fluid specific heat.

A typical value of 8 can be found by using the drag coefficient for the
case where the sphere drag is just equal to the inertial driving force.

This is expressed by

_ 4wd3Np

D 2_ 2
3w Rd

C (8-12)

where w is the weight of the sphere material per unit volume, and N is the
number of "g's' of accelerating force on the sphere in the direction of

the tube.

By using this and the Reynolds' number

_ pud
Rd-—LL
one obtains the relation
2wdN

9_

= 5 (8-13)
3p(L + ) ng

Typical numbers of interest are

544 lb/in3 (tungsten carbide)

w o=
d =2 in.

N =1

p = .002378 slugs/ft3 (air at one atmosphere)
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32.2 ft/sec2

.
c, = 187 ft 1b/1b°F (air)
)= .01

then
6 =7.2°F.

Thus, one pass of the sphere through the tube for one 'g'" acceleration
produces only 7.2°F temperature rise. Successive passes or higher ''g'"
loadings will increase this heating, but this does not appear to be a
problem. Also, the effective heating is reduced by the fact that the
sphere may travel over only a small portion of the total length of the

tube during each cycle of a re-entry oscillation.

8.4 EXPERIMENTAL CONSIDERATIONS

Experiments have been performed by rolling several stainless steel balls

through aluminum tubes and measuring the resulting velocities. When the

sphere has reached its equilibrium or terminal speed, its drag is just

equal to the driving force, as expressed by equation (8-12). This shows
d

that the range of CD which may be tested for some given value of R, is

)
proportional to wd3N and to the fluid parameter p/u~.

Since atmospheric air has a value of p/u2 which is almost as large as or
much larger than all other readily available fluids, it was the only fluid

utilized in the experimental program.

The parameter N was varied experimentally over a range of about 0.0l to
0.75 by changing the slope of the tube. With these values of N and p/uz,
most of the interesting range of the CD - Rd plane can be covered using a
stainless steel ball with a diameter of approximately 2 inches. Other
experiments were performed using nominally l-inch diameter balls in order

to verify the experiments performed with the larger balls.
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A third set of experiments was completed in which the larger balls (d =2
inches) were subjected to ''g'" loads corresponding to .5 = N = 10. 1In these
tests a short inclined tube was placed in a centrifuge, and the component
of the centrifugal force in the direction »f the tube axis provided the

high '"g'" environment.

Another experimental consideration which affected all experiments is the
distance necessary for the ball to travel before reaching its equilibrium
speed. This, effectively, places an upper limit on the sphere velocities
which can be obtained with laboratory facilities. An estimate of this

"equilibrium" distance may be obtained as follows.

Consider a sphere of weight W rolling down an inclined plane and being acted
upon by the propulsive force WN, and a retarding drag force which we as-
sume to be proportional to its translational velocity, U. The net force,

F, acting on the ball may be expressed as

F=WN (L - %—) (8-14)
m
so that when U = Um, no net forces will be influencing the ball and it will
no longer accelerate. Um is therefore referred to as the equilibrium

velocity.

When appropriate rolling inertia considerations are made, it may be shown

that the acceleration, X, is given by
% =2 gN (1 - 3—) = A - Bx (8-15)
7 U

where A = % gN and B =

C:ICP =]

m
(If the ball should slide rather than roll, this equation would not be
valid.)
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Equation (8-15) may be rewritten as

V + BU = A (&-15a)
dv
. =X 2 A - -5
T at BU (8-15b)

When equation (8-15b) is integrated and solved for t, we find that

and (1 - %—) = e (8-17)

We may now change equation (8-17) te the form

-Bt
T -U=u d-e ) (8-17a)

and after the proper integration we have an expression for the distance x

requived by velocity Um and time t.

U 2 -Bt

m
x = Ut + 5 Le - 1 (8-18)

We now let the time t and the distance X correspond to the time when
n

Uu,._L1l
(L -y =73
m e

Then from equation (8-16) we find that
(8-16a)

and

{(n - 1) +e } (8-18a)
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For cases of interest to these experiments n may assume any value from
n=1+ton=> Therefore the ratio (U/Um) may be made to approach unity

as close as desired by merely letting n be sufficiently large.

If we now consider the same rolling sphere system in the absence of any
drag forces, a consideration of the kinetic and potential energies of the
system shows that the kinetic energy must be equal to the potential energy

lost in traveling a distance X - Therefore we have

2

7 1 W _
K.E. = S (2 N Um ) = WNxo (8-19)
and 2
7 Um
X, =10 gﬁ— (8-19a)

Given the velocity, Um’ and equations (8-18a) and (8-19a) we develop the

following results.

7 Um2 Um2

o ST Gy Tk g (8-io2)
: -, Um Um2

X = {(n - 1) +e '} i kn —gﬁ (8-18a)

where n = 1,2,3

ko = 0.700 (no drag - 100% Um)
k) = 0.515 (U/U_ = 0.63)
k, = 1.588 (U/Um = 0.87)
k, = 2.87 (U/U = 0.95)
3 m
k4 = 4.22 (U/Um = 0.98)

In view of these results, it may be shown that a ball falling through a
vertical distance of 10 feet under the influence of a one-'"g'" load will
achieve a velocity (with little or no drag) of approximately 21 ft/sec.

In order to reach 95% of this velocity in the presence of retarding drag
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forces, the same ball would have to travel through a distance x3 given by

k
“3 _,2.87 .
X, = (ko) (x ) = (—‘70) (10) =41 ft

This problem was circumvented by providing a length of tubing which is
slotted on its top side. The slot allows air to escape so that the drag
force in this portionm of the tube is much less than in a second portion
of the same tube, which is not slotted. The first part is used to bring
the sphere up to the desired testing speed; in the second part, the speed
is measured by passing a light beam across the tube at three equidistant
stations. A light-sensitive device is used to record the passage of the
ball. 1If the time between the breaking of the first and the second light
beams is less (or more) than that between the second and third light
beams, the ball is slowing (or speeding) in the tube, and the equilibrium
velocity was exceeded (or was not attained). From this information, the
vertical fall distance in the first part of the tube can be either de-
creased (or increased) so as to decrease (or increase) the velocity the
sphere attains in the first portion of the tube. After several trials, a
starting height is found that accelerates the sphere to just its terminal
speed. In the above example, this slotting technique would decrease the
required tube length for sphere acceleration from something greater than

40 feet to about 10 feet.

Similar considerations were applied to the centrifuge experiments and the
results, in conjunction with physical size limitations, determined which

ball sizes could be studied.

8.5 EXPERIMENTAL FACILITIES

A photograph of the experimental apparatus used in the inclined tube
studies (low "g") is shown in Figure 8-2, and a schematic representation

of the facility is presented in Figure 8-3. As was mentioned in a previous

section, the apparatus consists of a 9 foot long aluminum tube which is
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divided into a slotted accelerating section (6 feet long) and a test
section. The test section is in turn divided into two portions. The first
foot of the tube is merely a closed portion (no slots) one foot long, which
is used to help the sphere reach equilibrium before it enters the actual
test section. The test section is comprised of three small holes (0.040
inches diameter) placed 12.000 inches apart, and which have been covered
and sealed with a thin (0.015 inch thick) clear mylar film to prevent air
leakage. Details concerning the light sources and the detectors are

presented in Figure 8-3.

The detectors are photoconductive devices whose resistance decreases as
light is made incident upon them. Therefore, as the sphere rolls down the
inclined tube past each detector, the total impedance of the circuit changes
and expresses itself as a change in the voltage drop across the series
resistor. The resulting signal approximates a square wave and is shown

in Figure 8-4. This figure is actually a tracing of a typical test run.

The output siznal mentioned above is placed into an amplifier whose output
is then used to drive a galvonometer~-type recorder. The recorder used in

these experiments was a Visicorder Model 1108 used in conjunction with a

00

.
(@]

wmeter. The recorder has several drive speeds

cps
and a timing line generator. This mechanism places a signal on the record
at discrete intervals of 1.0, 0.1, and 0.0l seconds. These marks are also
shown in Figure 8-4. Therefore, if one assumes a constant recorder speed,
the travel time between detectors may be measured to about 0.002 seconds by

interpolating between 0.0l second markers.

A 32-inch long version of the inclined tube model was constructed for use
in a series of centrifuge experiments. Figures 8-5 and 8-6 are photographs
of the apparatus prior to mounting in the centrifuge, and as it appeared

in the centrifuge, respectively. The inside vertical height of the

centrifuge facility dictated the maximum length of tubing which could be
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used, and the tube length in turn determined which ball sizes could be
studied. Calculations indicated that the largest » which could be studied
while allowing the ball to reach equilibrium velocity inside the tube was
0.0l. Therefore, only balls corresponding to A-values of 0.004 and 0.008
were used. Figure 8-7 is a sketch of the test apparatus showing the actual

radial positions of the detectors.

Details of the centrifuge facility used are as follows:

Manufacturer: Geniso, Inc.

Model: A-1030

Rating: 10,000 g-1b maximum 0.1 to 150 g at 38-in radius
100 1b to 100 g

Stability: Stability is 0.05 percent of steady-state g
averaged over a three-minute period

Speed: Variable from 10 to 400 rpm, measurement
accuracy is + 0.1 rpm

Rate: 3-1/3 rpm/sec maximum

Radius of Arm: Variable from 27 in. to 45 in.

Slip Rings: l6 each at 1 amp, 5 amp, and 10 amp

As in the previous studies, the motion of a ball past a photo-detector was

used tu determine the ball velocities. The ball velocity at cach of the
two detectors was determined by dividing the ball diameter by the time that
the ball interrupted the light beam. Since the light beam was less than

0.040 in. in diameter, the resolution of the time measurement was good.

No slotted accelerating section was used on the centrifuge model. Since
the parameter (Umz/gN) appearing in equations 8-18a and 8-19a was small
compared to the tube length, no slotted section was needed. Also, the
range of tests was limited to small values of (Umz/gN) because the distance
from the centrifuge axis of rotation to the ball varied somewhat with ball

height (see Figure 8-7). The precaution of using only small values of
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2
(Um*/gN) meant that the ball should approach its equilibrium specd with

only o short travel distance.

The procedure employed to obtain the high-"g" data was as [ollows. A
solenoid-operated caging apparatus was used (o hold the ball in place at
the bottom of the tube until the centrifuge reached a predetermined
angular velocity., Once it was determined the ceniriluge was operating
steadily at the desired speed, power Lo the solenoid was interrupted,

the ball procceded up the tube, and the resulting velocities were measured.
An clectrical "trip" wire at the top of the tube was connected Lo A small

Light outside the centriluge in order to determine when the ball reached

the top.  The centrifuge was Lhen stopped and prepared for anothcer run.

&.06 LEXPERIMENTAL RESULTS

The inclined tube configuration was usced Lo complete the low-"g'" experiments
using nominally 2-inch diameter balls. Four gap sizes with corresponding
‘-values of 0.004, 0.008, 0.015, and 0.036 have been studied, and the
driay coelficient data are shown in Figures 8-8 and 8-9. The solid lines
represent the analytical predictions against which the experimental re-
sults may be compared, and are large scale reproductions of the analytical

results shown in Figure 8-1.

As was cxpected, the lower © case (0 = .004) was by far the casicst Lo
study.  Drag forces in this instance were relatively large, and the sphere
reached cquilibrium velocity in a very short distance. The tube usced in
these experiments had a nowminal inside diameter of 2.008 inches. However,

minor variations in the tube diamecter were present from the extrusion

pProcess, and at extremely low values of & these variations create a
significant error in 2. 1In order to overcome this difficulty, the diameter
luctuations of the entire Lesl scction were carefully measured. The re-

sults indicated that a value of 2.009 inches should be used for (he length

between the first two detectors, and 2.007 inches between the second pair
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of detectors. This explains the appearance of the two sets of data points
shwon in Figure 8-8. 1In practice, it became impossible to obtain identical
velocities between the two pairs of detectors for the lower A-values, and
this led to the inspection mentioned above. For values of A greater than
about 0.1, this effect was sufficiently small to be undetectable, as may

be seen in Figure 8-9.

Similar experiments were performed using nominally l-inch diameter balls

(A = 0.007, 0.011, 0.018) as a check on the previous results. These are
also shown in Figures 8-8 and 8-9. Although the Reynolds number range

of the two ball sizes is somewhat different, enough data points are shown

to indicate consistent results regardless of ball size. The broken diagonal
lines appearing in Figure 8-8 and 8-9 represent the 0.86 "g'" testing limit
for a l-inch ball (which is about the largest 'g testing that can be done
using a fixed tube - that is, without the centrifuge), and the 8 "g" limit

for a 2-inch ball. These limits were calculated from equation 8-12.

Figures 8-10 and 8-11 are the resulting velocity profiles obtained in the
centrifuge. It should be noted that two distinct sets of data points
appear on each figure. Although reference to Figure 8-6 shows that three
detectors were present, only two were actually used at one time. Since
the detectors are at slightly different radial positions from the center
of the centrifuge, the balls experience slightly different centrifugal
forces and necessarily different velocities result. The resulting
velocities are shown in Figures 8-10 and 8-11. It should be noted that
in referring to the '"g'"-load, N, we are always speaking of the load in

the direction of the axis of the tube unless specified otherwise.

Two difficulties appear upon examination of the velocity data. The first
is the fact that the curves of velocity versus N of the centrifuge data
do not even closely agree with those obtained earlier using the fixed

tube. These are compared in Figures 8-12 and 8-13. Because of this
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disagreement, the two types of experiments were carefully analyzed to
discover a reason for the disagreement. The Coriolis force was present
only for the centrifuge tests, but a careful consideration of this did not
show a significant effect. The ball rolling friction was measured, and
the retarding force was found to be slightly less than 0.002 times the
normal force between the ball and the tube; this also produced no sig-
nificant effect to explain the disagreement. A third effect, the so-
called "spinning phenomenon', was discovered and is used here to explain

the difference.

The idea of the spinning phenomenon is a result of the observation that

if the ball were to roll along the tube while the tube was being rotated
by the centrifuge, as first had been supposed, then the vector é which
represents the ball rotational velocity must change its direction at the
rate i/, where i/ is also the angular velocity of the centrifuge arm. This
is shown in Figures 8-14 and 8-15, where é is the angular velocity of the
ball. Figures 8-14 and 8-15 are unrealistic because the centrifuge fails
to provide a torque to the ball that would cause § Lo change in the manner

indicated.

Since Figures 8-14 and 8-15 are not correct, the investigators supposed
that the ball must slide rather than roll through the tube. Furthermore,
it was supposed that the vector é remained constant with respect to the
centrifuge arm and at some angle « as shown in Figure 8-16. This assump-
tion was made because the problem would be greatly increased in complexity
if b were not constant. Now, since the ball is sliding upward in the tube,
the friction force imposes on the ball a torque T which is constant with
respect to the centrifuge. The torque adds a rotational acceleration to
the ball, so that é must be changing absolutely. Since é is assumed fixed
with respect to the centrifuge, the angle v must be zero. If % were any
other angle, the magnitude of b would change int ime. The torque T serves

to change the direction of § absolutely; this change is just fast enough
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FIGURE 8-14. TOP VIEW OF CENTRIFUGE WITH BALL ROLLING UPWARD IN TUBE
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FIGURE 8-15. TOP VIEW OF CENTRIFUGE, BALL, AND TUBE A SHORT TIME AFTER
THAT OF FIGURE 8-14.

F02909 U

FIGURE 8-1l6. SUPPOSED EQUILIBRIUM ANGULAR VELOCITY OF BALL WITH RESPECT
TO CENTRIFUGE
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that é rotates with the centrifuge speed. Hence b remains constant with
respect to the centrifuge. The important result is that the ball must be
both spinning with velocity @ and sliding in the tube. Therefore, the dif-
ference between the centrifuge and the fixed-tube results on Figures

8-12 and 8-13 is primarily the result of the sliding of the ball.

+1.
L

A correction for this sliding friction loss was applied to the centrifuge

data, and is shown in a succeeding section.

The spinning of the ball should also make some change in the aerodynamic
drag force on the ball, and this has not been separated from the friction
force in the above paragraph. However, since the rotational velocity of
the ball surface can be shown to be much smaller than that of the air near
the ball surface, this should make only a quite small change in the aero-

dynamic drag. For this reason, the change has been neglected.

The second difficulty encountered appears in the data of Figures 8-10 and
8-11 (although the effect is more pronounced in Figure 8-10). At ball
velocities of 3 ft/sec for A = 0.004 and 7 ft/sec for A = 0.008 the
velocities at the two detectors differ greatly. An examination of this
problem indicates that it is a Mach number effect. Reterence to equation
8-1 shows that the average velocity, V, of the flow in the gap is related

to the ball velocity, U, and the gap parameter, A, by the relationship

= {1+ ——] (8-1)
20+ A

o<
|

If we calculate the quantity within the bracket for \-values of 0.004 and

0.008, we get (V/U)) 004 = 126 and (V/U)\ - 008 " 64. 1f we now

associate with each > the respective ball velocities 3 ft/sec and 7 ft/sec

we find the corresponding V-values to be V = 004 378 ft/sec and

V., _ 008 = 444 fr/sec. Although these values are considerably lower than

the sonic velocity (V = 1100 ft/sec) it must be remembered that they
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represent the average velocity of the flow through the wap. It is not
inconceivable that the maximum gap velocities could be two to three times
the average velocity, in which case part of the flow would approach or
exceed the speed of sound. Therefore, Mach number would be an important
parameter in determining the ball drag, and shock waves could develop in
the flow. The shock waves might be expected to produce unsteady values
of drag and hence the separation of data points as shown on

and 8-11.

rg

igures 8-10

Since the passive damper studies have been limited to cases where Mach
number effects are not significant, the data points on Figure 8§8-10 ex-
cecding 3 ft/sec and on Figure 8-11 exceeding 7 ft/sec will not be used
in the final data. The tests indicate that Mach number effects will be

significant whenever Mach number, the ratio of V to the sonic speed, ex-

ceeds about 0.35.

8.7 SLIDING FRICTION CORRECTIONS

In order to estimate the friclLion losses which appecarcd in the centrituge
experiments, reference must [irst be made to Figures 8-12 and 8-13. At
some given velocity U, and specified A (say, Figure 8-12; A = .004) let

_N be the difference between the two sets of data. Then the sliding fric-

tion coefficient W must be given by

L= == (8-20)

where Fn is the force on the ball in the direction normal to the tube axis.
The values of o calculated from Figures 8-12 and 8-13 for the regions in
which the velocities overlapped are shown in Figure 8-17. Although many

data points were not available, an upper limit appears to exist which is a

functrion of the gap parameter, . The upper limit for * = .004 was rather
arbitrarily chosen as Hp = 0.09 whereas b 0.13 was taken as the upper
limit for the > = .008 data. 1In each instance the faired curves were
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applied to the experimental results. The resulting CD - Rd points are

shown in Figures 8-8 and 8-9,

The final numerical data for both the low "g'" and high '"g'" cases are

presented in Table 8-1.

8.8 CONCLUSIONS
The results of this tudy have led to the following conclusions. In some

instances, limitations exist and are also disclosed.

L. The experiments performed have indicated the feasibility of the in-

clined tube technique in accurately determining drag data for a rolling

sphere when the accelerating force is such that N < .8.

2. The results indicate good agreement with the analytical formulations
at the low values of A (say, A = .01).

3. For A-values such that A = .0l agreement is not as good, but the ex-

perimental and analytical results differ only by a factor of about

Lhree.

4. The experimental results were further substantiated by performing

tests with two different sizes of balls (d2 = 2d1) for similar values

of .

5. The high-"g" experiments (0.5 © N = 10) were completed in the centrifuge,
and the results indicated that the centrifuge is not fully adequate as

a tool for determining meaningful drag data.

6. Approximate corrections applied to the centrifuge data can be used to

calculate ball drag values at '"g'" levels approaching N = 8.

/. Care must be taken to insure in a given damper configuration that the
mean fluid velocity in the gap between the ball and the tube does not

exceed the critical Mach number M = .35,
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For Mach numbers approaching or exceeding M = .35, the flow in the gap
approaches sonic conditions, and the drag values must be corrected to
account for compressibility.

The experiments performed at M » .35 indicate that the ball motion be-
comes erratic rather than approaching an equilibrium speed. This

implies that attendant shock formations may be reflected from the

closed end of the tube. Such a phenomenon would mean that the ball

drag would be a complicated function of ball position, past time history,
and Mach number as well as Reynolds number; this would greatly complicate

a passive damper design procedure.
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Note 1:

Note 2:

NOMENCLATURE

numerical value of "g' forces acting on a body - a body of mass

m experiences force F given by F = Nmg
acceleration due to gravity = 32.2 ft/sec2
gap parameter = t/d
tube inside diameter minus ball diameter
ball diameter
ball translational velocity with respect to the tube
ball maximum or "equilibrium' velocity
average velocity of the air flow through the gap, t
angular velocity of the centrifuge arm
angular velocity of the ball in the tube

total friction coefficient - includes sliding as well as rolling
friction

Reynolds number = pUd/u
fluid density

fluid viscosity

drag coefficient = 2D/pU2A
sphere drag

sphere area = Wdz/a

Mach number - M = V/a
speed of sound

ball weight

Ball specific weight - w = W/ball volume

The symbols listed above apply only to Section 8.

Not all symbols used in the text are presented in this
nomenclature. Those parameters which were momentarily introduced
and defined to illustrate a specific concept (i.e., heating
parameter, sliding effects, etc.) and which are not employed in

the development of the flow model are not repeated in this

nomenclature.
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TABLE 1 EXPERIMENTAL RESULTS

Low "g'" Studies - 2-inch spheres
Tube Specifications: Material - 2024 T-3 aluminum

Length - 9 ft

Outside diameter - 2.250 inches

Inside diameter - 2.008 inches
Ball Specifications: Material 440-C stainless steel

Diameter - nominally 2- inches - varies

with *
Sphericity - + 0.0001 inches
Density - 0.277 1b/in3
d = 2.000 inches
Rd = (1.06 x 1?3) (Um) ,
CD = (5.0 x 10°7) (N/Rd )
A= 0.0045 » = 0.0035
N U~ft/sec Rxl107% ¢ x107 N U~ft/sec Rx10°% ¢ x107?
—r —d =D ~mr— —d =Ir

.033 .076 .806 25.7 .033 064 .678 36.3
.062 .132 1.40 15.8 062 .113 1.20 21.5
.093 .189 2.00 11.6 .093 .164 1L.74 15.2
124 .241 2.55 9.55 124 .212 2.25 12.25
.155 .289 3.06 8.30 .155 .258 2.73 10.4
.186 .328 3.48 7.70 .186 .293 3.11 9.60
.217 .379 4.02 7.60 217 .340 3.60 8.35
.267 A4l 4.67 6.15 .267 .403 4.28 7.30
314 .392 5.21 5.80 314 467 4.95 6.40
.358 . 540 5.72 5.45 .358 497 5.27 6.45
402 .588 6.23 5.17 402 .541 5.73 6.12
.463 .657 6.97 4,77 463 .606 6.42 5.60
.517 712 7.55 4.54 .517 .645 6.84 5.50
.608 .785 8.32 4.46 .608 727 7.70 5.13
.684 .862 9.13 4.11 .084 .800 8.48 4.76
775 .929 9.85 3.99 775 .871 9.23 4.55
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d:

1992 inches

R, = (1.053 x 10°) ()
¢ = (4.91 x 1019 /R %)

L = 0.0085 ’ = 0.0075

N QMth/sec delo- EDX10-3 N gﬁth/sec gdxlO— QD§IO_3
.035 .402 4.23 9.57 .035 .391 4.12 10.11
.062 593 6.25 7.78 .062 .577 6.08 8.22
.097 .788 8.30 6.91 .097 .766 8.07 7.31
.140 .990  10.43 6.28 . 140 965 10.17 6.64
186 1.177 12.40 5.94 .86 1.148  12.10 6.23
248 1.395 14.7 5.63 248 1,361 14.35 5.90
.302 1.57 16.55 5.41 .302 1.53 16.12 5.70
353 1.72 18.11 5.26 .353 1.67 17.6 5.58
411 1.90 20.0 5.03 411 1.86 19.6 5.25
.551  2.25 23.7 4.81 511 2.20 23.2 5.02
617 2.41 25.4 4.69 617 2.36 24.9 4.88
.678  2.58 27.2 4.50 678  2.53 26.65 4.68
760 2.82 29.7 4,23 760 2.70 28.45 4.60

d = 1.978 d = 1.938 inches

L= (1.048 x Lgf) W) Ry = (1.028 x 1?2) @)

p = (4.84 x‘1ol”) (N/Rd‘) €, = (4.54 x 1077) (N/R,")

A = 0.0155 A = 0.036
N gawft/sec gdxlo'3 gD5;0'3 N U-~ft/sec gdx10"3 nglo"z

.035 0.86  0.901 2.08 031 2.05 2.11 3.16
.062 1.21 1.268 1.86 062  3.35 3.44 2.38
.101 1.59 1.67 1.75 093 4.25 4.37 2.21
132 1.86  1.95 1.68 24 4,90 5.04 2.215
.186 2.33  2.44 1.51 .155 5,55 5.71 2.16
.240 2.70 2.83 1.45 186  6.15 6.33 2.11
.302 3.07  3.22 1.40 225 6.70 6.89 2.155
.357 3.34  3.50 1.41 275 7.30 7.51 2.175
426 3.70  3.88 1.37 334 8.25 8.48 2.11
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A = 0.0155 A = 0.036

N U~ft/sec gdx10'3 QD)ﬂ__:; N U~ft/sec gdx10'3 _c_l}xlo'2
.489 4.00 4.19 1.35 411 9.30 9.57 2.04
<555 4.27 4.47 1.34
.620 4.59 4.81 1.30
.683 4.78 5.01 1.31
Low '"g" Studies - l-inch spheres
Tube Specifications: Material - 6061 T-6 aluminum

Length -~ 9 ft
Outside diameter - 1.125 inches
Inside diameter - 0.998 inches
Ball Specifications: Material - 440-C stainless steel
Diameter - nominally l-inch - varies with XA
Sphericity - + 0.0001 inches
Density - 0.277 1b/in3
d = 0.991 inches d = 0.987 inches
R, = (5.26 x 102) W) R, = (5.23 x 1023 W)
CD = (6.10 x 107) (N/Rd ) CD = (6.025 x 107) (N/Rd )
A = 0.007 A = 0.011
N U~ ft/sec R.x107% ¢ x10°* N U~ ft/sec R x107° ¢ x1073
T d =D - —d =D
.074 .241 1.266 2.82 074 484 2.53 6.96
.093 .261 1.372 3.01 .081 .495 2.59 7.27
.124 .337 1.740 2.50 .093 .548 2.87 6.80
.139 .380 1.998 2.135 124 .685 3.58 5.82
.152 451 2.37 1.650 .155 .814 4,26 5.15
.186 477 2.51 1.800 .209 .991 5.18 4.70
.217 .551 2.90 1.572 .240 1.081 5.65 4.54
.236 .616 3.235 1.38 272 1.228 6.42 3.98
.256 .621 3.265 1.463 .318 1.305 6.83 4,10
.333 .751 3.95 1.30 .395 1.495 7.82 3.89
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= 0.007 ) = 0.011

2 4

N U _~ ft/sec gdxio' nglo' N U _~ ft/sec gdxlo' Cxlo ~
.383 .869 4.57 1.12 427 1.643 8.59 3.48
426 .888 4.67 1.19 480 1.79 9.36 3.30
465 1.020 5.36 0.988 .527 1.750 9.15 3.80
.512 1.02 5.36 1.088 .625 1.956 10.23 3.59
.558 1.072 5.64 1.070 667 2.05 10.72 3.49
675 1.213 6.38 1.012 .737 2.22 11.61 3.29
.737 1.375 7.23 0.860

d = 0.980 inches
R, = (5.20 x 10°) )
CD = (5.90 x 107) (N/Rd‘z)
) = 0.018

N U ~ ft/sec R x107> ¢ x1073
_N U, fefsec  Ryx10 = € x10 7
074 .961 .500 1.746
.093 1.074 .559 1.758
124 1.295 .673 1.616
.1395 1.432 .745 1.480
.186 1.702 .885 1.402
209 1.813 .943 1.386
232 1.992 1.036 1.274
.264 2.04 1.060 1.386
.310 2.27 1.180 1.310
341 2.40 1.247 1.293
379 2.635 1.370 1.192
426 2.81 1.460 1.180
.512 3.14 1.632 1.132
.656 3.71 1.929 1.038
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High "g" Studies - 2-inch spheres

Tube Specifications:

Ball Specifications:

Material - 2024 T-3 aluminum

Length - 32 inches

Outside diameter - 2.250 inches

Inside diameter - 2.008 inches

Material - 440-C stainless steel

Diameter - nominally 2-inches - varies with \

Sphericity - + 0.0001 inches

Density - 0.277 lb/in3

Note: For these tests the quantity N refers to the net accelerating force
after the friction and gravity losses have been subtracted.
d = 2.000 inches
R, = (1.06 x 1?3) w,)
CD = (5.0 x 1077) (N/Rd )
A = 0.004 A = 0.004

N U _~ ft/sec gdxlo'3 QrﬁO-A N U_~ ft/sec gdx10'3 gﬁmo'4
311 471 .500 6.22 .333 479 .508 6.44
447 .590 .626 5.70 476 .592 628 6.02
.582 .689 .781 4,77 622 681 .722 6.35
.828 <942 .990 4.16 865 927 983 4.47
1.122 1.158 1.228 3.725 1.267 1.128 1.196 4.43
1.498 1.378 1.461 3.51 1.549 1.344 1.425 3.81
.91 1.618 1.716 3.245 2.270 1.558 1.653 4.15
2.405 1.852 1.962 3.255 2.487 1.812 1.922 3.36
2.963 2.11 2.24 2.955 3.040 2.06 2.185 3.19
2.536 2.35 2.49 2.85 3.633 2.285 2,425 3.09
4.262 2.53 2.68 2.965 4.260 2.53 2.68 2.965
5.825 2.83 3.00 2.68 4.942 2.78 2.95 2.84
5.732 2.98 3.16 2.87 5.844 2.88 3.05 3.14
6.644 3.21 3.40 2.875 6.794 3.035 3.22 3.28
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d = 1.992 inches
R, = (1.053 x 10°) (U))
d 10 m 9
CD = (4.91 x 10°7) (N/Rd )
) = 0.008 ) = 0.008
_3 _3 -
N U ~ ft/sec R x10 C.x10 N U = ft/sec R x10 c x10
= —d =D 1 —d =D

.263 1.509 1.589 5.11 .307 1.168 1.25 9.64

564 2.305 2.43 4. 69 72 1.909 2.01 8.77
.878 2.91 3.06 4.59 919 2.52 2.655 6.40
1.25 3.46 3.64 4.62 1.30 3.13 3.30 5.96
1.635 4,05 4.27 4.41 1.69 3.69 3.885 5.50
2.063 4.61 4 .86 4.29 2.121 4,37 4.60 4.92
2.536 5.03 5.30 4.43 2.583 4.61 4.86 5.37
2.997 5.36 5.65 4.61 3.065 5.19 5.47 5.03
3.51 5.93 6.25 4.41 3.597 5.53 5.83 5.18
4,052 6.15 6.48 4.73 4.154 6.15 6.48 4.96
4,624 6.64 6.99 4.65 4.744 6.64 7.00 4.76
5.234 6.92 7.29 4.83 5.364 6.92 7.28 4.97
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